Intel Core 2 Duo приходит в ноутбуки: обновлённая платформа Centrino Duo

Автор: Gavric
Дата: 20.10.2006
Все фото статьи

Введение


Выход новых процессоров Intel с микроархитектурой Core оказался воистину революционным событием. Произошло это в первую очередь благодаря тому, что процессоры с данной микроархитектурой оказались чрезвычайно удачным предложением для рынка настольных систем. Особенно на фоне своих предшественников, CPU семейств Pentium 4 и Pentium D, в основе которых лежала микроархитектура NetBurst. Процессоры Core 2 Duo для настольных PC оказались не только значительно более быстрыми, но и гораздо более экономичными, чем Pentium 4 и Pentium D. Думается, не будет преувеличением, если сказать, что микроархитектура Core стала мощным прорывом, практически одномоментно сделавшим процессоры с микроархитектурой NetBurst малоконкурентными предложениями, по меньшей мере, в качестве CPU верхней ценовой категории. Кроме того, процессоры Intel Core 2 Duo стали отличным аргументом в соперничестве с компанией AMD, продукты семейств Athlon 64 и Athlon 64 X2 которой в течение нескольких последних лет предлагали лучшее соотношение потребительских качеств. Иными словами, микроархитектура Intel Core стала огромным событием для рынка настольных систем, а появление процессоров на её основе в корне поменяло сложившуюся ситуацию. Как показали многочисленные независимые тестирования новых процессоров Intel, Core 2 Duo, вне всяких сомнений, на данный момент можно смело назвать самыми быстрыми десктопными процессорами, которые, кроме того, имеют и выигрышное относительно других изделий соотношение производительности и энергопотребления.
Наш сайт уделил немало внимания процессорам с микроархитектурой Core, ориентированным на использование в составе настольных PC. Однако следует напомнить, что одним из преимуществ этой микроархитектуры, которым козырял Intel во время её презентации, является её универсальность. Согласно концепции разработчиков, процессоры, основанные фактически на одном и том же ядре с новой микроархитектурой, могут с незначительными изменениями быть использованы не только в настольных PC, но и в составе серверов или мобильных компьютеров.


Столь поразительная гибкость Core достигается за счет возможности варьирования соотношением максимальной тактовой частоты и энергопотребления в достаточно высоких пределах. Иными словами, работая на несколько более низких, чем настольные процессоры, частотах, CPU с микроархитектурой Core могут с успехом применяться и в экономичных мобильных системах. Именно такому применению новой микроархитектуры и будет посвящена настоящая статья.
Иными словами, в данном материале речь пойдёт о мобильных процессорах с микроархитектурой Core, известных также под кодовым именем Merom, и о мобильных компьютерах на их основе. Надо заметить, что исследование новой микроархитектуры Core под таким углом может скорее дать свежую пищу для размышлений, нежели очередное рассмотрение последних процессоров для настольных систем. Дело в том, что процессоры Merom пришли на смену CPU семейства Core Duo (кодовое имя Yonah), которые использовали отнюдь не микроархитектуру NetBurst. Поэтому, говорить о том, что исход поединка Core Duo против Core 2 Duo предрешён, было бы неправомерно. Процессоры Yonah имеют собственную мобильную микроархитектуру, они с определёнными допущениями могут быть охарактеризованы как двухъядерные CPU, построенные на базе Pentium M, микроархитектура которых позаимствована ещё у Pentium III. Процессоры же семейства Core (Conroe, Merom и Woodcrest) могут считаться дальнейшим развитием Yonah. То есть, мобильные процессоры Core Duo и Core 2 Duo – близкие родственники, и их сравнение, как с теоретической, так и с практической точек зрения, весьма интересно. Именно этим мы и займёмся.

От Yonah к Merom: что изменилось


Несмотря на то, что Intel пытается убедить неискушённых пользователей в том, что процессоры с микроархитектурой Core представляют собой дальнейшее развитие как мобильной микроархитектуры, так и микроархитектуры NetBurst, на самом деле это утверждение вызывает определённые сомнения. С нашей точки зрения, процессоры Conroe, Merom и Woodcrest не наследуют от NetBurst практически ничего, а микроархитектуру Core следует рассматривать как следующий шаг в эволюционной ветви Pentium III – Pentium M – Core Duo. Это следует хотя бы из того факта, что новые CPU, обладая коротким конвейером из 14 стадий, отнюдь не рассчитаны на покорение запредельных тактовых частот. На это же, кстати, указывает и название CPU, построенных на новой микроархитектуре: Core 2 Duo (оно единое как для десктопных и мобильных процессоров).
Подробный рассказ об особенностях микроархитектуры Core можно найти в соответствующей статье "Секрет высокой производительности Intel Core 2 Duo: микроархитектура Core". Однако при рассмотрении особенностей процессоров Conroe, которые архитектурно не отличаются и от главных героев сегодняшнего материала, мобильных CPU Merom, мы не задавались целью сопоставления характеристик новых процессоров и Core Duo (Yonah). Сегодня же для этого выдался вполне подходящий случай.
Давайте посмотрим, какими же усовершенствованиями обладает Merom по сравнению со своим предшественником, Yonah. Однако в первую очередь следует обратить внимание на те общие детали, которые роднят эти два процессора между собой. Сразу бросается в глаза тот факт, что и Yonah и Merom построены по двухъядерной схеме с общей на два ядра разделяемой L2 кэш-памятью. В обоих процессорах используется одна и та же технология Intel Smart Cache, позволяющая обоим ядрам совместно использовать одни и те же области кэш-памяти, а также задействовать объём кэш-памяти в соответствие со своими потребностями. При этом общий размер L2 кеша в Yonah и Merom может различаться, однако сути это не меняет.
Кроме того, оба процессора обладают одинаковой кэш-памятью первого уровня, сходной не только по объёму, но и по организации. Её размер – по 32 Кбайта на код и на данные.
Схема исполнения инструкций у Yonah и Merom также похожа. Длина исполнительного конвейера у процессоров близка, однако конвейер более нового CPU длиннее на две стадии. Это уже обусловлено различиями между процессорами, которые, несмотря на имеющиеся сходства, всё-таки весьма существенны. Команда инженеров, работавшая над Merom, внесла в этот процессор массу усовершенствований, главными из которых следует считать поддержку этим продуктом 64-битных расширений архитектуры x86 Intel 64 и, так называемую, технологию Intel Wide Dynamic Execution, означающую увеличенное число декодеров и исполнительных блоков в процессорном ядре.


Дабы не перегружать изложение большим количеством технических характеристик, просто приведём таблицу, сопоставляющую основные микроархитектурные характеристики процессоров Yonah и Merom.


Следует отметить, что, помимо увеличения числа декодеров и исполнительных устройств, более новые процессоры Merom могут похвастать технологией macrofusion, благодаря которой в ряде случаев (при наличии в коде условных переходов) скорость декодирования инструкций может дополнительно вырасти на одну инструкцию за такт. Таким образом, процессоры с микроархитектурой Core совершенно определённо способны обрабатывать больше инструкций за такт, нежели CPU предыдущего поколения Yonah, на всех этапах.
Как видно из таблицы, к числу преимуществ Merom над Yonah может быть отнесена и более высокая скорость работы с SSE и FP инструкциями. Это достигается как за счёт увеличения числа соответствующих функциональных блоков, так и за счёт расширения разрядности обрабатываемых за такт SSE операндов.
К числу дополнительных плюсов Merom, которые не нашли отражения в таблице, относятся значительно усовершенствованная предварительная выборка, а также технология memory disambiguation, повышающая эффективность внеочередного исполнения команд.
Иными словами, несмотря на значительное родство между процессорами Yonah и Merom, последний является значительным шагом вперёд с точки зрения микроархитектуры. Поэтому, судя по теоретическим выкладкам, Merom должен быть значительно более производительным мобильным продуктом. Однако для процессоров, применяющихся в ноутбуках, важной является не только производительность, но и энергопотребление, прямо влияющее на продолжительность работы компьютера от батарей. Поэтому, прежде чем делать окончательные выводы о перспективности Merom в роли мобильного CPU, мы должны познакомиться не только с микроархитектурными, но и прочими его характеристиками.

Модельный ряд Core 2 Duo для мобильных компьютеров


Хотя мобильные процессоры Merom мало отличаются от их "настольных" аналогов Conroe, определённые различия между соответствующими линейками процессоров всё-таки имеются. Впрочем, это совершенно неудивительно, ведь в ноутбучных применениях чистая производительность системы никогда не является главным параметром. Мобильных пользователей волнует соотношение быстродействия и затраченной на это энергии. Именно поэтому, линейка процессоров Merom отличается по своему составу от семейства Conroe даже несмотря на то, что процессоры для портативных компьютеров продаются под тем же маркетинговым именем – Core 2 Duo.


Фактически, отличия между процессорами Core 2 Duo для настольных и мобильных систем состоят лишь в тактовых частотах и в тепловых и электрических характеристиках. Иными словами, уменьшив напряжение питания и предельные тактовые частоты, инженеры Intel добились того, что процессоры Conroe превратились в Merom и получили возможность использования в ноутбуках. Так, максимальное напряжение питания процессорного ядра у мобильных Core 2 Duo составляет 1.3 В, предельная тактовая частота на сегодняшний день ограничивается величиной в 2.33 ГГц. Иными словами, мобильные процессоры с микроархитектурой Core отстают от настольных аналогов по тактовой частоте на 25%. Но зато типичное тепловыделение мобильных CPU укладывается в тепловой пакет 34 Вт, в то время как типичное тепловыделение процессоров для настольных PC достигает 65 Вт (или даже 75 Вт для Extreme моделей).
Впрочем, в то время как мобильные Core 2 Duo кажутся чрезвычайно экономичными на фоне процессоров для настольных применений, своим предшественникам по энергопотреблению они всё-таки проигрывают. Двухъядерные процессоры Core Duo (Yonah) обладали более низким типичным тепловыделением, не превышающим 31 Вт. И это при том, что в тактовых частотах более старые Core Duo своим современным последователям не уступают.
Для того чтобы более явно проиллюстрировать вышесказанное, приведём полный список двухъядерных процессоров для ноутбуков, предлагаемых Intel на данный момент.


Как видим, основные формальные характеристики процессоров семейств Yonah и Merom мало отличаются друг от друга. Тоже самое можно сказать и про цены. Ноутбуки с одинаковыми характеристиками, основанные на Core Duo и Core 2 Duo, относятся к одной и той ж ценовой категории. Иными словами, Intel не делает принципиальной разницы между этими процессорами.

Тестовая платформа: ASUS F3Ja


Родство между Yonah и Merom проявляется и в том, что и те, и другие процессоры, входят в состав одной и той же мобильной платформы Centrino Duo с кодовым именем Napa. Эта платформа была анонсирована одновременно с процессорами Core Duo, а потому является уже достаточно зрелой. Её подробный обзор на нашем сайте можно найти тут. Мы же просто напомним, что в состав этой платформы, помимо двухъядерных мобильных CPU входят наборы логики Intel 945PM/GM и беспроводной сетевой адаптер Intel PRO/Wireless 3945ABG.


Следует отметить, что использование одной и той же платформы Centrino Duo для процессоров Yonah и Merom – явление временное. В апреле следующего года Intel готовит обновление своей мобильной платформы, которое известно на сегодня под кодовым именем Santa Rosa.


Хотя процессор в этой платформе останется тем же, изменится его физический разъём, а также поменяются чипсет и коммуникационный модуль. В состав Santa Rosa войдут процессоры Core 2 Duo с 800-мегагерцовой шиной в Socket P исполнении, чипсет Crestline (мобильный аналог семейства Intel 965 для настольных компьютеров) и коммуникационный модуль Kedron. Основными особенностями перспективной платформы станут на порядок лучшая встроенная графика, оптимизированная для работы с операционными системами семейства Microsoft Windows Vista, поддержка 802.11n WiFi со значительно увеличенной пропускной способностью, и Intel NAND Technology (Robson), подразумевающая встроенный в систему кэш из флэш-памяти, ускоряющий загрузку операционной системы и приложений.


Однако это - день завтрашний. Сегодня же Core Duo и Core 2 Duo могут использоваться в одних и тех же платформах, они совместимы и по выводам. Иными словами, современные ноутбуки, построенные на платформе Centrino Duo, могут безо всяких проблем укомплектовываться как процессорами Yonah, так и Merom.
Именно этим фактом мы и воспользовались при выборе оборудования для тестирования. В наших испытаниях приняло участие два совершенно одинаковых мобильных компьютера, различие между которыми состояло лишь в используемом процессоре. Этими компьютерами стали ноутбуки ASUS серии F3Ja, которые могут комплектоваться двухъядерными CPU различного типа.


Сам по себе мобильный компьютер ASUS F3Ja представляет собой мультимедийный двухшпиндельный ноутбук с 15.4-дюймовым широкоформатным экраном, имеющим стандартное разрешение 1280x800. Особенностью серии ASUS F3Ja является и то, что в этих ноутбуках вместе с мобильной платформой Napa используются внешние видеокарты с шиной PCI Express.


Ноутбуки, полученные нами на тестирование, были построены с применением процессоров Intel Core Duo T2400 и Intel Core 2 Duo T5600. Это – Yonah и Merom, работающие на одной и той же тактовой частоте 1.83 ГГц и оснащённые кэш-памтью одинакового объёма, 2 Мбайта.


Intel Core Duo T2400


Intel Core 2 Duo T5600

В основе тестовых систем лежал набор системной логики Intel 945PM Express (Calistoga) с южным мостом ICH7-M. Этот набор логики позволяет использовать в мобильных системах производительную двухканальную DDR2-667 SDRAM, которая и была установлена в наших ноутбуках в количестве 1 Гбайт. Надо заметить, что, к сожалению, используемая в настоящее время ASUS память от Nanya работает при такой частоте лишь с таймингами 5-5-5-15.


Ноутбуки серии ASUS F3J могут комплектоваться различными дискретными мобильными графическими картами, основанными на чипах как от ATI, так и от NVIDIA. Полученные нами тестовые компьютеры модификации F3Ja были укомплектованы графическими адаптерами ATI Mobility Radeon X1600 с 256 Мбайтами видеопамяти, динамически расширяемой до 512 Мбайт благодаря технологии HyperMemory.


Подробные характеристики ноутбуков, использованных нами в составе тестовых систем, можно почерпнуть на сайте производителя, мы же добавим информацию лишь о тех особенностях, которые оказывают прямое влияние на результаты тестов. Как следует из того, что в основе ноутбуков ASUS F3Ja лежит платформа Centrino Duo, эти мобильные компьютеры снабжаются беспроводным сетевым адаптером Intel PRO/Wireless 3945ABG с шиной PCI Express. Также, в тестовых мобильных компьютерах использовались Serial ATA жёсткие диски Fujitsu MHV2120BH ёмкостью 120 Гбайт со скоростью вращения шпинделя 5400RPM и 8-скорстные приводы DVD RW. Оба ноутбука были снабжены идентичными батареями ёмкостью 4800 mAh.

Результаты тестов производительности



SYSmark2004 SE

По традиции, производительность систем в приложениях "общего" характера мы определяли при помощи теста SYSMark 2004 SE. Этот бенчмарк моделирует работу пользователя в популярных приложениях, активно используя многозадачность. Перед тем, как перейти к результатам, хочется отметить, что SYSMark 2004 SE в первую очередь позиционируется как тестовое приложение для определения производительности настольных систем. Тем не менее, в состав данного пакета входят и приложения, которые, вообще говоря, характерны в качестве типичной нагрузки и для мобильных компьютеров, в особенности такого класса, который обеспечивает высокопроизводительная мобильная платформа Napa. Именно поэтому результаты бенчмарка мы приведём в "развёрнутом" виде, фокусируясь отдельно на каждом типе создаваемой им нагрузки.


В данном случае моделируется работа пользователя, который в пакете 3ds max 5.1 рендерит в bmp файл изображение, и, в это же время готовит web-страницы в Dreamweaver MX. После окончания этих операций выполняется создание 3D анимации в векторном графическом формате.
Несмотря на то, что в данном тесте системы нагружаются достаточно "тяжёлыми" задачами, требовательными к вычислительным ресурсам процессоров, разница между результатами, показанными системами на основе процессоров Merom и Yonah не так уж и велика. Смена процессора от Core Duo T2400 к Core 2 Duo T5600 позволяет получить в данном случае лишь 5-процентный прирост в производительности. Откровенно говоря, от 25-процентного (в теории) увеличения количества обрабатываемых за такт инструкций вместе с улучшенной предвыборкой данных можно было бы ожидать и большего. Но, что характерно, столь небольшую прибавку в скорости можно наблюдать не только в специально подобранных задачах.


В этом случае моделируется работа пользователя в Premiere 6.5, который создает видео из нескольких роликов в raw-формате и отдельных звуковых треков. Ожидая окончания операции, пользователь готовит также изображение в Photoshop 7.01, модифицируя имеющуюся картинку и сохраняя ее на диске. После завершения создания видео-ролика, пользователь редактирует его и добавляет специальные эффекты в After Effects 5.5.
В данном случае использование более нового процессора, благодаря его усовершенствованной микроархитектуре, позволяет получить более весомый выигрыш, достигающий 8%. Однако до теоретических цифр этот результат вновь не дотягивает. К сожалению, это наводит на мысли о достаточно невысокой эффективности проведённого в Merom увеличения числа декодеров и исполнительных устройств.


В данном бенчмарке моделируется работа профессионального вебмастера. Гипотетический пользователь разархивирует контент веб-сайта из архива в zip-формате, одновременно используя Flash MX для открытия экспортированного 3D векторного графического ролика. Затем пользователь модифицирует его путем включения других картинок и оптимизирует для более быстрой анимации. Итоговый ролик со специальными эффектами сжимается с использованием Windows Media Encoder 9 для транслирования через Интернет. Затем создаваемый веб-сайт компонуется в Dreamweaver MX, а параллельно система сканируется на вирусы с использованием VirusScan 7.0.
При такой нагрузке процессор Core 2 Duo демонстрирует уже 13-процентное преимущество над своим предшественником, работающим на аналогичной тактовой частоте. Очевидно, что основная заслуга за этот результат лежит на значительно ускоренных FP и SSE блоках. Впрочем, даже несмотря на это впечатляющим преимущество новой микроархитектуры назвать нельзя.


В данном случае при измерении производительности используется вполне привычный для типичного пользователя ноутбука сценарий. Пользователь в Outlook 2002 получает письмо, которое содержит набор документов в zip-архиве. Пока полученные файлы сканируются на вирусы при помощи VirusScan 7.0, пользователь просматривает e-mail и вносит пометки в календарь Outlook. Затем пользователь просматривает корпоративный веб-сайт и некоторые документы при помощи Internet Explorer 6.0.
Выигрыш, который даёт в данном случае применение нового процессора Core 2 Duo, составляет 5%. Это совсем непохоже на то сногсшибательное преимущество, которые демонстрируют процессоры Core 2 Duo в настольных системах. Похоже, это можно считать свидетельством хороших характеристик мобильных процессоров Core Duo, которые в настольных компьютерах не использовались.


В данном бенчмарке гипотетический пользователь редактирует текст в Word 2002, а также использует Dragon NaturallySpeaking 6 для преобразования аудио-файла в текстовый документ. Готовый документ преобразуется в pdf формат с использованием Acrobat 5.0.5. Затем, при задействовании сформированного документа создается презентация в PowerPoint 2002.
Величина превосходства Core 2 Duo в быстродействии в данном случае составляет 7%, что ещё раз даёт нам возможность восхититься эффективностью представленной в 1999 году микроархитектуры Pentium III, которая, в конечном итоге, легла в основу современных процессоров с микроархитектурой Core.


Здесь модель работы такова: пользователь открывает базу данных в Access 2002 и выполняет ряд запросов. Документы архивируются с использованием WinZip 8.1. Результаты запросов экспортируются в Excel 2002, и на их основании строится диаграмма.
Усовершенствованные алгоритмы предварительной выборки данных, вместе с реализованными в Core 2 Duo техниками эффективного задействования шины памяти, наконец-то находят подходящее поле для демонстрации своих возможностей. В данном тестовом сценарии мобильная система, построенная на новом CPU, превосходит платформу прошлого поколения на 14%. Впрочем, если вспомнить про теоретические преимущества микроархитектуры процессоров Merom над Yohah, то и это отнюдь не кажется впечатляющим результатом.
В целом же, усреднённый уровень превосходства производительности, который можно получить с помощью мобильных процессоров семейства Core 2 Duo при решении типичных офисных задач и задач по созданию цифрового контента, составляет порядка 9%.

Синтетические тесты: PCMark05, 3DMark05

PCMark05 – тест, позволяющий оценить не только общую производительность системы, но и скорости отдельных подсистем.


Принципиально новых данных на приведённой диаграмме не видно. Ноутбук, построенный на процессоре Core 2 Duo T5600 опережает аналог с процессором Core Duo T2400 примерно на 7%.


При сравнении производительности в алгоритмах, максимально нагружающих именно вычислительные ресурсы CPU, величина превосходства новой микроархитектуры несколько увеличивается и достигает уже 10%.


Однако самые интересные результаты даёт тест памяти. Две совершенно аналогичные мобильные системы, в которых установлена одинаковая двухканальная память DDR2-667 SDRAM с таймингами 5-5-5-15, демонстрируют здесь кардинально различные показатели. Учитывая, что оба исследуемых процессора, и Core 2 Duo T5600, и Core Duo T2400, обладают одинаковой кэш-памятью второго уровня, а также функционируют на равной тактовой частоте, 25-процентное превосходство CPU с микроархитектурой Core остаётся отнести только на счёт реализованных в новинке технологий работы с памятью, объединённых под маркетинговым термином Intel Smart Memory Access. На деле, речь здесь в первую очередь идёт, очевидно, о чрезвычайно агрессивной предвыборке данных.
Что же касается производительности тестовых ноутбуков в игровых графических приложениях, то для её оценки мы в первую очередь воспользовались тестом 3DMark06. Надо заметить, что благодаря использованию в составе мобильных компьютеров ASUS F3Ja видеоадаптеров ATI Mobility Radeon X1600, они демонстрируют очень неплохое быстродействие в современных графических 3D приложениях. Иными словами, играть в современные игры на этих ноутбуках вполне возможно, о чём и свидетельствуют полученные нами результаты.


Уровень быстродействия графических подсистем тестовых ноутбуков в 3D режиме вполне приемлем. Система, оснащённая процессором Core 2 Duo, при этом обгоняет конкурирующую платформу примерно на 3%. Столь небольшое различие в результатах легко объяснимо тем, что данный тест ориентирован в первую очередь на оценку производительности видеокарт.
Впрочем, в состав бенчмарка 3DMark06 входит и тест, позволяющий оценить процессорную производительность при типовых вычислениях, выполняемых современными играми. То есть, при расчёте физики среды и логики противников.


Хотя в данном случае производительность графики отходит на второй план, разница в результатах вновь невелика. Core 2 Duo T5600 обгоняет Core Duo T2400 всего лишь на 3.5%.

3D игры

Итак, ноутбуки с видеоадаптером ATI Mobility Radeon X1600, подобные нашей тестовой платформе, ASUS F3Ja, вполне могут применяться для игр. Поэтому, не протестировать производительность в реальных игровых приложениях мы не могли.




Вне зависимости от используемого процессора, тестируемые мобильные компьютеры показали вполне приемлемый уровень FPS в относительно современных 3D играх. Но, следует отметить, что использование более новых процессоров семейства Core 2 Duo позволяет получить нескольку лучший результат. Тестовый компьютер, основанный на Core 2 Duo T5600, обогнал свой аналог на базе Core Duo T2400 на 12% в Quake 4 и на 4% - в Half Life 2. Эти результаты несколько разнородны, соответственно, различие в скорости платформ с различными процессорами в различных играх будет зависеть от параметров игрового движка. Однако не следует забывать, что процессоры с микроархитектурой Core в любом случае имеют несколько преимуществ, важных для игр: они более эффективно работают с шиной памяти, а также значительно более быстры в FP и SSE операциях.

Кодирование медиа-контента

Как мы уже убедились, современные ноутбуки не отстают по производительности и функциональности от настольных компьютеров среднего уровня. Поэтому, кодирование аудио и видео вполне может стать типичной задачей и для мобильных PC.
В первую очередь мы измерили скорость преобразования аудио файлов в популярный формат mp3.


Превосходство нового мобильного процессора в Apple iTunes 7 достаточно типично – оно составляет около 7%.


Кодирование видео с использованием популярного кодека Xvid выявляет гораздо большее различие в быстродействии Yonah и Merom. Благодаря тому, что Merom гораздо быстрее работает с SSE инструкциями, его превосходство над Yonah составляет почти 20%.


В целом похожая картина наблюдается и в Windows Media Encoder 9, который мы также применили для измерения быстродействия при кодировании видео. Здесь превосходство Core 2 Duo над аналогичным по тактовой частоте Core Duo достигает 15%.

Тестирование в приложениях

Для этого раздела мы отобрали несколько задач, использование которых на ноутбуках современного уровня весьма вероятно.


Архиватор WinRAR, несмотря на то, что производительность при сжатии информации сильно зависит от скорости работы подсистемы памяти, не выявляет существенного различия в скорости тестируемых процессоров. Вероятно, продвинутые алгоритмы предвыборки данных, реализованные в Merom, в данном случае оказываются неэффективны.


Adobe Photoshop, напротив, на Core 2 Duo работает ощутимо быстрее, обеспечивая преимущество системы с ним примерно на 12%.


Ещё более впечатляющее превосходство процессора с микроархитектурой Core выявляется в популярном приложении для нелинейного видеомонтажа, Adobe Premiere Pro. Здесь ноутбук с более новым CPU получает преимущество в 15%. Очевидно, что залогом успеха Core 2 Duo в двух последних случаях является быстрый блок SSE операций.




Core 2 Duo опережает своего предшественника и при тестировании в 3ds max. Если при работе с окнами проекции различие в скорости систем не столь бросается в глаза, финальный рендеринг силами Merom выполняется существенно быстрее.

Время работы от батарей


Продолжительность работы от аккумуляторной батареи – не менее важная, чем производительность, характеристика мобильного компьютера. Поэтому, измерению этой величины при наиболее типичных моделях нагрузки мы уделили отдельное внимание. Тестирование выполнялось с использованием тестового пакета MobileMark2005. Отметим, что все тесты по измерению времени автономной работы мы проводили при максимальной яркости экранов и при отключении переходов ноутбуков и их подсистем в состояния StandBy.
Первый сценарий, который мы задействовали для измерения продолжительности работы ноутбуков от батарей, основывался на моделировании обычной работы пользователя в типичных офисных приложениях. Также как и при измерении быстродействия, в данном случае на ноутбуке исполнялись следующие приложения: Microsoft Word 2002, Microsoft Excel 2002, Microsoft PowerPoint 2002, Microsoft Outlook 2002, Netscape Communicator 6.01, WinZip Computing WinZip 8.0, McAfee VirusScan 5.13, Adobe Photoshop 6.0.1 и Macromedia Flash 5. Используемый в данном случае тестовый скрипт изображал реальное использование ноутбука в профессиональной деятельности сотрудником автомобильной компании.


Сопоставление результатов тестирования производительности со временем работы от батарей даёт новую пищу для размышлений. Как оказывается, большая производительность Core 2 Duo имеет и обратную сторону. Ноутбук с этим процессором работает от батареи несколько меньше, чем его аналог с несколько более медленным Core Duo. Получается, что примерно 10-процентный прирост производительности, отмеченный нами в тестировании, стоит Merom примерно 8-процентного снижения времени автономной работы мобильного компьютера. Именно поэтому процессоры Core Duo пока ещё рано списывать со счетов: они прекрасно уживутся в тех случаях, когда автономность имеет большее значение, нежели производительность.
Второй сценарий, который мы использовали в наших испытаниях, моделировал использование мобильных компьютеров для проигрывания видео. Конкретнее, проведённый тест демонстрирует время работы ноутбуков от батарей при просмотре DVD-фильма с использованием плеера InterVideo WinDVD 6.0.


Качественно, соотношение результатов такое же, как и при эксплуатации ноутбуков в бизнес приложениях. Система с процессором Core Duo даст возможность своему хозяину обеспечить слегка более длительное время просмотра DVD видео.
Третий эксперимент заключался в измерении времени работы ноутбуков при работе от аккумуляторной батареи в случае простого чтения текста. В качестве программы, отображающей текст на экране, применялся Netscape Navigator 6.01.


Хотя при чтении текста с экрана батарея ноутбука расходуется медленнее, чем во всех других случаях, соотношение результатов качественно не изменяется. Мобильный компьютер на базе процессора Core Duo работает в данном сценарии на 6 минут больше.
Последний, четвёртый сценарий был ориентирован на измерение продолжительности автономной работы при использовании сети Интернет. Модель поведения пользователя в данном случае чрезвычайно проста: используя Microsoft Internet Explorer, выполняется обращение к различным веб-ресурсам. При этом подключение ноутбуков к сети осуществляется посредством встроенных беспроводных сетевых контроллеров, которые в нашем случае были совершенно одинаковы.


В этом сценарии время автономной работы ноутбуков на процессорах Core Duo и Core 2 Duo практически уравнивается. Однако система с более новым процессором Core 2 Duo работает от батареи всё-таки на 4 минуты меньше.
Суммируя полученные результаты, отметим, что заявленное типичное тепловыделение процессоров Core 2 Duo превышает эту же характеристику процессоров Core Duo отнюдь не просто так. На практике это означает, что стремление к более высокой производительности выливается в уменьшение времени автономной работы системы. Впрочем, максимальная разница во времени полной разрядки аккумуляторной работы, которую нам удалось зафиксировать, составила всего лишь 8%, что вряд ли можно назвать принципиальным преимуществом.

Выводы


Глядя на полученные в рамках данного исследования результаты, сделать однозначные выводы очень непросто. Дело в том, что в памяти ещё свежи впечатления от того головокружительного успеха, который способствовал появлению процессоров с микроархитектурой Core для рынка настольных компьютеров. К сожалению, в случае с мобильными процессорами Core 2 Duo ситуация выглядит далеко не так радужно. В то время как десктопные CPU семейства Core 2 Duo вывели производительность настольных систем на новый рубеж, более чем значительно увеличив их скорость, мобильные Core 2 Duo не обеспечивают такого же прироста быстродействия по сравнению с их мобильными предшественниками, процессорами Core Duo.
Как показали тесты, Core 2 Duo превосходят Core Duo в скорости во всех приложениях, однако средняя величина этого преимущества (при одинаковой тактовой частоте) оказывается в среднем менее 10%. А это – не более чем эволюционное изменение. Иными словами, несмотря на все значительные микроархитектурные усовершенствования, сделанные при переходе от Core Duo к Core 2 Duo, практический прирост производительности в мобильных системах оказался не столь значительным, как того хотелось бы. Некоторым утешением на этом фоне может стать ускорение работы с видео, в задачах такого типа увеличение производительности может достигать даже 20%, но видеообработку всё-таки тяжело назвать типичным применением для мобильных компьютеров. Таким образом, более важным результатом выхода мобильных процессоров Core 2 Duo следует считать не возросшее быстродействие, а появление поддержки ноутбучными платформами Intel 64-битных режимов, которая до сих пор не была реализована в предшествующих CPU этого производителя.
В дополнение к сказанному остаётся отметить, что достигнутое увеличение производительности мобильных процессоров Core 2 Duo проходит не бесследно, а влечёт за собой и рост энергопотребления. В конечном итоге это выражается в том, что мобильные компьютеры на базе Core 2 Duo работают от батареи несколько меньше, чем их аналоги с более старыми процессорами Core Duo. Впрочем, справедливости ради следует отметить, что прирост быстродействия всё-таки превосходит увеличение энергопотребления.
Суммируя вышесказанное, хочется ещё раз отметить, что появление мобильных процессоров Core 2 Duo пока явно не вызовет революционных изменений на рынке ноутбуков. Тем более что Intel в данный момент не обновляет свою мобильную платформу целиком, а лишь предлагает использовать новые CPU в старой платформе Napa. Поэтому, если вы уже владеете ноутбуком на базе платформы Napa с двухъядерным процессором Core Duo, заменять или совершенствовать его нет практически никакого смысла.
Настоящая же революция на рынке мобильных решений ожидается весной следующего года, когда в дополнение к расширенной линейке Core 2 Duo с увеличенными тактовыми частотами и возросшей частотой системной шины Intel предложит новый чипсет с высокопроизводительной графикой и технологией Robson, а также новый беспроводной сетевой компонент с увеличенной скоростью передачи данных.