Опять про i5: обзор линейки процессоров Intel Core i5 с микроархитектурой Ivy Bridge

Автор: Gavric
Дата: 03.09.2012
Все фото статьи

Введение


Новые процессоры компании Intel, относящиеся к семейству Ivy Bridge, присутствуют на рынке уже несколько месяцев, но между тем складывается впечатление, что их популярность не слишком высока. Мы неоднократно отмечали, что на фоне предшественников они не выглядят существенным шагом вперёд: их вычислительная производительность возросла незначительно, а частотный потенциал, раскрываемый через разгон, и вовсе, стал даже хуже чем у прошлого поколения Sandy Bridge. Отсутствие ажиотажного спроса на Ivy Bridge отмечает и Intel: жизненный цикл прошлого поколения процессоров, при производстве которого используется более старый технологический процесс с 32-нм нормами, продлевается и продлевается, а в отношении распространения новинок делаются не самые оптимистичные прогнозы. Конкретнее, к концу этого года Intel собирается довести долю Ivy Bridge в поставках десктопных процессоров лишь до 30 процентов, в то время как 60 процентов всех поставляемых CPU будет продолжать базироваться на микроархитектуре Sandy Bridge. Даёт ли это нам право не считать новые интеловские процессоры очередным успехом компании?

Отнюдь нет. Дело в том, что всё сказанное выше относится только к процессорам для настольных систем. Мобильный же рыночный сегмент отреагировал на выход Ivy Bridge совсем по-другому, ведь большинство из нововведений нового дизайна сделано именно с оглядкой на ноутбуки. Два основных преимущества Ivy Bridge перед Sandy Bridge: существенно снизившееся тепловыделение и энергопотребление, а также ускоренное графическое ядро с поддержкой DirectX 11 – в мобильных системах востребованы очень серьёзно. Благодаря этим своим достоинствам Ivy Bridge не только дал толчок к выходу ноутбуков с гораздо лучшим сочетанием потребительских характеристик, но и катализировал внедрение ультрапортативных систем нового класса – ультрабуков. Новый же технологический процесс с 22-нм нормами и трёхмерными транзисторами позволил снизить размеры и себестоимость изготовления полупроводниковых кристаллов, что, естественно, выступает ещё одним аргументом в пользу успешности нового дизайна.

В результате, в какой-то мере нерасположенными к Ivy Bridge могут быть лишь пользователи настольных компьютеров, причём недовольство связано не с какими-то серьёзными недостатками, а скорее с отсутствием кардинальных положительных перемен, которые, впрочем, никто и не обещал. Не стоит забывать, что в интеловской классификации процессоры Ivy Bridge относятся к такту «тик», то есть представляют собой простой перевод старой микроархитектуры на новые полупроводниковые рельсы. Впрочем, и сама Intel прекрасно понимает, что приверженцы настольных систем заинтригованы процессорами нового поколения несколько меньше, чем их коллеги – пользователи ноутбуков. Поэтому и не торопится проводить полномасштабное обновление модельного ряда. На данный момент в десктопном сегменте новая микроархитектура культивируется лишь в старших четырёхъядерных процессорах серий Core i7 и Core i5, причём модели, основанные на дизайне Ivy Bridge, соседствуют с привычными Sandy Bridge и не спешат отодвигать их на второй план. Более же агрессивное внедрение новой микроархитектуры ожидается лишь поздней осенью, а до тех пор вопрос о том, какие же четырёхъядерные процессоры Core предпочтительнее – второго (двухтысячной серии) или третьего (трёхтысячной серии) поколения, покупателям предлагается решать самостоятельно.

Собственно, для облегчения поисков ответа на этот вопрос мы и провели специальное тестирование, в котором решили сопоставить между собой процессоры Core i5, относящиеся к одной ценовой категории и предназначенные для использования в рамках одной и той же платформы LGA 1155, но основанные на разных дизайнах: Ivy Bridge и Sandy Bridge.

Третье поколение Intel Core i5: подробное знакомство


Ещё полтора года тому назад, с выпуском серии Core второго поколения, Intel ввела чёткую классификацию процессорных семейств, которой и придерживается по настоящий момент. Согласно этой классификации фундаментальными свойствами Core i5 являются четырёхъядерный дизайн без поддержки технологии «виртуальной многопоточности» Hyper-Threading и кэш-память третьего уровня объёмом 6 Мбайт. Эти особенности были присущи процессорам Sandy Bridge предыдущего поколения, они же соблюдаются и в новом варианте CPU с дизайном Ivy Bridge.


Это значит, что все процессоры серии Core i5, использующие новую микроархитектуру, сильно похожи друг на друга. Это в какой-то мере позволяет Intel унифицировать выпуск продукции: все сегодняшние Core i5 поколения Ivy Bridge используют совершенно идентичный 22-нм полупроводниковый кристалл степпинга E1, состоящий из 1,4 млрд. транзисторов и имеющий площадь порядка 160 кв. мм.

Несмотря на схожесть всех LGA 1155-процессоров Core i5 по целому ряду формальных характеристик, отличия между ними хорошо заметны. Новый технологический процесс с 22-нм нормами и трёхмерными (Tri-Gate) транзисторами позволил Intel понизить для новых Core i5 типичное тепловыделение. Если ранее Core i5 в LGA 1155-исполнении обладали тепловым пакетом 95 Вт, то для Ivy Bridge эта величина снижена до 77 Вт. Однако вслед за уменьшением типичного тепловыделения увеличения тактовых частот процессоров Ivy Bridge, входящих в семейство Core i5, не последовало. Старшие Core i5 прошлого поколения, также как и их сегодняшние последователи, имеют номинальные тактовые частоты, не превышающие 3.4 ГГц. Это значит, что в целом преимущество в производительности новых Core i5 над старыми обеспечивается лишь улучшениями в микроархитектуре, которые, применительно к вычислительным ресурсам CPU, малозначительны даже по словам самих разработчиков Intel.

Говоря же о сильных сторонах свежего процессорного дизайна, в первую очередь следует обратить внимание на изменения графического ядра. В процессорах Core i5 третьего поколения используется новая версия интеловского видеоускорителя – HD Graphics 2500/4000. Она обладает поддержкой программных интерфейсов DirectX 11, OpenGL 4.0 и OpenCL 1.1 и в некоторых случаях может предложить более высокую производительность в 3D и более быстрое кодирование видео высокого разрешения в формат H.264 посредством технологии Quick Sync.

Кроме того, процессорный дизайн Ivy Bridge содержит и ряд улучшений сделанных в «обвязке» - контроллерах памяти и шины PCI Express. В результате, системы, основанные на новых процессорах Core i5 третьего поколения, могут полноценно поддерживать видеокарты, использующие графическую шину PCI Express 3.0, а также способны тактовать DDR3-память на более высоких, чем их предшественники, частотах.

С момента своего первого дебюта на широкой публике до настоящего момента десктопное процессорное семейство Core i5 третьего поколения (то есть, процессоры Core i5-3000) осталось почти неизменным. В нём добавилась лишь пара промежуточных моделей, в результате чего, если не брать в рассмотрение экономичные варианты с урезанным тепловым пакетом, оно теперь состоит из пяти представителей. Если к этой пятёрке добавить пару основанных на микроархитектуре Ivy Bridge Core i7, мы получим полную десктопную линейку 22-нм процессоров в LGA 1155-исполнении:


Приведённая таблица, очевидно, нуждается в дополнении, более подробно описывающем функционирование технологии Turbo Boost, позволяющей процессорам самостоятельно увеличивать свою тактовую частоту, если это позволяют энергетические и температурные условия эксплуатации. В Ivy Bridge данная технология претерпела определённые изменения, и новые процессоры Core i5 способны авторазгоняться несколько агрессивнее, чем их предшественники, относящиеся к семейству Sandy Bridge. На фоне минимальных улучшений в микроархитектуре вычислительных ядер и отсутствия прогресса в частотах именно это зачастую способно обеспечить определённое превосходство новинок над предшественниками.


Предельная частота, которую процессоры Core i5 способны достигать при загрузке одного или двух ядер, превышает номинальную на 400 МГц. Если же нагрузка носит многопоточный характер, то Core i5 поколения Ivy Bridge, при условии их нахождения в благоприятных температурном режиме, могут поднимать свою частоту на 200 МГц выше номинального значения. При этом эффективность работы Turbo Boost для всех рассматриваемых процессоров совершенно одинакова, а отличия от CPU прошлого поколения заключаются в большем приросте частоты при загрузке двух, трёх и четырёх ядер: в Core i5 поколения Sandy Bridge предел авторазгона в таких условиях был на 100 МГц ниже.

Пользуясь показаниями диагностической программы CPU-Z, ознакомимся с представителями модельного ряда Core i5 с дизайном Ivy Bridge несколько подробнее.

Intel Core i5-3570K




Процессор Core i5-3570K – это венец всей линейки Core i5 третьего поколения. Он может похвастать не только самой высокой в серии тактовой частотой, но и, в отличие от всех остальных модификаций, имеет важную особенность, подчёркнутую литерой «K» в конце модельного номера – незаблокированный множитель. Это позволяет Intel не без оснований причислять Core i5-3570K к специализированным оверклокерским предложениям. Причём, на фоне старшего оверклокерского процессора для платформы LGA 1155, Core i7-3770K, Core i5-3570K выглядит очень соблазнительно благодаря куда более приемлемой для многих цене, что способно сделать из этого CPU чуть ли не самое лучшее рыночное предложение для энтузиастов.

При этом Core i5-3570K интересен не только своей предрасположенностью к разгону. Для прочих пользователей эта модель может быть интересна и благодаря тому, что в ней встроена старшая вариация графического ядра – Intel HD Graphics 4000, которая имеет существенно более высокую производительность, нежели графические ядра прочих представителей модельного ряда Core i5.

Intel Core i5-3570




То же самое название, что и у Core i5-3570K, но без финальной литеры, как бы намекает, что мы имеем дело с неоверклокерской версией предыдущего процессора. Так оно и есть: Core i5-3570 работает на точно таких же тактовых частотах, что и его более продвинутый собрат, но не позволяет востребованное среди энтузиастов и продвинутых пользователей безграничное изменение множителя.

Однако есть и ещё одно «но». В Core i5-3570 не попала быстрая версия графического ядра, так что этот процессор довольствуется младшей версией графики Intel HD Graphics 2500, которая, как мы покажем далее, существенно хуже по всем аспектам производительности.

В итоге, Core i5-3570 больше похож на Core i5-3550, чем на Core i5-3570K. На что у него есть вполне веские причины. Появившись чуть позднее первой группы представителей Ivy Bridge, этот процессор символизирует собой некое развитие семейства. Имея ту же самую рекомендованную стоимость, что и модель, стоящая в табели о рангах на строчку ниже, он как бы заменяют собой Core i5-3550.

Intel Core i5-3550




Убывание модельного номера в очередной раз указывает на снижение вычислительной производительности. В данном случае, Core i5-3550 медленнее Core i5-3570 из-за чуть меньшей тактовой частоты. Впрочем, разница составляет всего 100 МГц, или около 3 процентов, так что не стоит удивляться, что и Core i5-3570, и Core i5-3550 оценены Intel одинаково. Логика производителя заключается в том, что Core i5-3570 должен постепенно вытеснить с полок магазинов Core i5-3550. Поэтому-то по всем остальным характеристикам, кроме тактовой частоты, оба эти CPU полностью идентичны.

Intel Core i5-3470




Младшая пара процессоров Core i5, основанных на новом 22-нм ядре Ivy Bridge, имеет рекомендованную цену ниже 200-долларовой отметки. По близкой цене эти процессоры можно найти и в магазине. При этом Core i5-3470 мало в чём уступает старшим Core i5: на месте все четыре вычислительных ядра, 6-мегабайтный кэш третьего уровня и тактовая частота свыше 3-гигагерцовой отметки. Intel избрала для дифференциации модификаций в обновлённом ряду Core i5 100-мегагерцовый шаг тактовой частоты, так что ожидать существенного различия между моделями в быстродействии в реальных задачах попросту неоткуда.

Впрочем, Core i5-3470 дополнительно отличается от старших собратьев и по графической производительности. Видеоядро HD Graphics 2500 работает в нём на чуть более низкой частоте: 1.1 ГГц против 1.15 ГГц у более дорогих модификаций процессоров.

Intel Core i5-3450




Самая младшая в иерархии Intel вариация процессора Core i5 третьего поколения, Core i5-3450, подобно Core i5-3550, постепенно уходит с рынка. Процессор Core i5-3450 плавно заменяется на описанный выше Core i5-3470, который работает на слегка более высокой таковой частоте. Других отличий между этими CPU нет.

Как мы тестировали


Для получения полного расклада производительности современных Core i5, нами были подробно протестированы все пять описанных выше Core i5 трёхтысячной серии. Основными соперниками для этих новинок выступили более ранние LGA 1155-процессоры аналогичного класса, относящиеся к поколению Sandy Bridge: Core i5-2400 и Core i5-2500K. Их стоимость вполне позволяет противопоставлять эти CPU новым Core i5 трёхтысячной серии: Core i5-2400 имеет такую же рекомендованную цену, как Core i5-3470 и Core i5-3450; а Core i5-2500K продаётся чуть дешевле Core i5-3570K.

Кроме этого, на диаграммы мы поместили результаты тестов процессоров более высокого класса Core i7-3770K и Core i7-2700K, а также процессора, предлагаемого компанией-конкурентом, AMD FX-8150. Кстати, весьма показательно, что после очередных снижений цен этот старший представитель семейства Bulldozer стоит как самые дешёвые Core i5 трёхтысячной серии. То есть, AMD уже не питает никаких иллюзий по поводу возможности противопоставления собственного восьмиядерника интеловским CPU класса Core i7.

В итоге, состав тестовых систем включал следующие программные и аппаратные компоненты:

Процессоры:

AMD FX-8150 (Zambezi, 8 ядер, 3.6-4.2 ГГц, 8 Мбайт L3);
Intel Core i5-2400 (Sandy Bridge, 4 ядра, 3.1-3.4 ГГц, 6 Мбайт L3);
Intel Core i5-2500K (Sandy Bridge, 4 ядра, 3.3-3.7 ГГц, 6 Мбайт L3);
Intel Core i5-3450 (Ivy Bridge, 4 ядра, 3.1-3.5 ГГц, 6 Мбайт L3);
Intel Core i5-3470 (Ivy Bridge, 4 ядра, 3.2-3.6 ГГц, 6 Мбайт L3);
Intel Core i5-3550 (Ivy Bridge, 4 ядра, 3.3-3.7 ГГц, 6 Мбайт L3);
Intel Core i5-3570 (Ivy Bridge, 4 ядра, 3.4-3.8 ГГц, 6 Мбайт L3);
Intel Core i5-3570K (Ivy Bridge, 4 ядра, 3.4-3.8 ГГц, 6 Мбайт L3);
Intel Core i7-2700K (Sandy Bridge, 4 ядра + HT, 3.5-3.9 ГГц, 8 Мбайт L3);
Intel Core i7-3770K (Ivy Bridge, 4 ядра + HT, 3.5-3.9 ГГц, 8 Мбайт L3).

Процессорный кулер: NZXT Havik 140;
Материнские платы:

ASUS Crosshair V Formula (Socket AM3+, AMD 990FX + SB950);
ASUS P8Z77-V Deluxe (LGA1155, Intel Z77 Express).

Память: 2 x 4 GB, DDR3-1866 SDRAM, 9-11-9-27 (Kingston KHX1866C9D3K2/8GX).
Графические карты:

AMD Radeon HD 6570 (1 Гбайт/128-бит GDDR5, 650/4000 МГц);
NVIDIA GeForce GTX 680 (2 Гбайт/256-бит GDDR5, 1006/6008 МГц).

Жёсткий диск: Intel SSD 520 240 GB (SSDSC2CW240A3K5).
Блок питания: Corsair AX1200i (80 Plus Platinum, 1200 Вт).
Операционная система: Microsoft Windows 7 SP1 Ultimate x64.
Драйверы:

AMD Catalyst 12.8 Driver;
AMD Chipset Driver 12.8;
Intel Chipset Driver 9.3.0.1019;
Intel Graphics Media Accelerator Driver 15.26.12.2761;
Intel Management Engine Driver 8.1.0.1248;
Intel Rapid Storage Technology 11.2.0.1006;
NVIDIA GeForce 301.42 Driver.

При тестировании системы, основанной на процессоре AMD FX-8150, патчи операционной системы KB2645594 и KB2646060 были установлены.

Видеокарта NVIDIA GeForce GTX 680 использовалась при тестировании скорости работы процессоров в системе с дискретной графикой, AMD Radeon HD 6570 же применялась в качестве ориентира при исследовании производительности интегрированной графики.

Процессор Intel Core i5-3570 в тестировании систем, снабжённых дискретной графикой, участия не принимал, так как с точки зрения вычислительной производительности он полностью идентичен Intel Core i5-3570K, работающему на таких же тактовых частотах.

Вычислительная производительность



Общая производительность

Для оценки производительности процессоров в общеупотребительных задачах мы традиционно используем тест Bapco SYSmark 2012, моделирующий работу пользователя в распространённых современных офисных программах и приложениях для создания и обработки цифрового контента. Идея теста очень проста: он выдаёт единственную метрику, характеризующую средневзвешенную скорость компьютера.


В целом, процессоры Core i5, относящиеся к трёхтысячной серии, демонстрируют вполне ожидаемую производительность. Они быстрее, чем Core i5 прошлого поколения, причём процессор Core i5-2500K, который является почти самым быстрым Core i5 с дизайном Sandy Bridge, уступает по быстродействию даже младшей из новинок, Core i5-3450. Однако при этом до Core i7 свежие Core i5 дотянуться не в состоянии, сказывается отсутствие в них технологии Hyper-Threading.

Более глубокое понимание результатов SYSmark 2012 способно дать знакомство с оценками производительности, получаемое в различных сценариях использования системы. Сценарий Office Productivity моделирует типичную офисную работу: подготовку текстов, обработку электронных таблиц, работу с электронной почтой и посещение Интернет-сайтов. Сценарий задействует следующий набор приложений: ABBYY FineReader Pro 10.0, Adobe Acrobat Pro 9, Adobe Flash Player 10.1, Microsoft Excel 2010, Microsoft Internet Explorer 9, Microsoft Outlook 2010, Microsoft PowerPoint 2010, Microsoft Word 2010 и WinZip Pro 14.5.


В сценарии Media Creation моделируется создание рекламного ролика с использованием предварительно отснятых цифровых изображений и видео. Для этой цели применяются популярные пакеты компании Adobe: Photoshop CS5 Extended, Premiere Pro CS5 и After Effects CS5.


Web Development — сценарий, в рамках которого моделируется создание web-сайта. Используются приложения: Adobe Photoshop CS5 Extended, Adobe Premiere Pro CS5, Adobe Dreamweaver CS5, Mozilla Firefox 3.6.8 и Microsoft Internet Explorer 9.


Сценарий Data/Financial Analysis посвящён статистическому анализу и прогнозированию рыночных тенденций, которые выполняются в Microsoft Excel 2010.


Сценарий 3D Modeling всецело посвящён созданию трёхмерных объектов и рендерингу статичных и динамических сцен с использованием Adobe Photoshop CS5 Extended, Autodesk 3ds Max 2011, Autodesk AutoCAD 2011 и Google SketchUp Pro 8.


В последнем сценарии, System Management, выполняется создание бэкапов и установка программного обеспечения и апдейтов. Здесь задействуются несколько различных версий Mozilla Firefox Installer и WinZip Pro 14.5.


В большинстве сценариев мы сталкиваемся с типичной картиной, когда Core i5 трёхтысячной серии быстрее своих предшественников, но уступают любым Core i7, как основанным на микроархитектуре Ivy Bridge, так и на Sandy Bridge. Однако существуют и случаи не совсем типичного поведения процессоров. Так, в сценарии Media Creation процессору Core i5-3570K удаётся превзойти Core i7-2700K; при использовании пакетов трёхмерного моделирования неожиданно хорошо проявляет себя восьмиядерный AMD FX-8150; а в сценарии System Management, генерирующим в основном однопоточную нагрузку, процессор прошлого поколения Core i5-2500K почти догоняет по быстродействию свежий Core i5-3470.

Игровая производительность

Как известно, производительность платформ, оснащенных высокопроизводительными процессорами, в подавляющем большинстве современных игр определяется мощностью графической подсистемы. Именно поэтому при тестировании процессоров мы стараемся проводить испытания так, чтобы по возможности снять нагрузку с видеокарты: выбираются наиболее процессорозависимые игры, а тесты проводятся без включения сглаживания и с установкой далеко не самых высоких разрешений. То есть, полученные результаты дают возможность оценить не столько уровень fps, достижимый в системах с современными видеокартами, сколько то, насколько хорошо проявляют себя процессоры с игровой нагрузкой в принципе. Следовательно, основываясь на приведённых результатах, вполне можно строить догадки о том, как будут вести себя процессоры и в будущем, когда на рынке появятся более быстрые варианты графических ускорителей.












В наших многочисленных предшествующих тестированиях мы неоднократно характеризовали процессоры семейства Core i5 как хорошо подходящие для геймеров. Не намерены отказываться от этой позиции мы и теперь. В игровых применениях Core i5 сильны благодаря эффективной микроархитектуре, четырёхъядерному дизайну и высоким тактовым частотам. Отсутствие же у них поддержки технологии Hyper-Threading способно сыграть добрую службу в плохо оптимизированных под многопоточность играх. Впрочем, количество таких игр из числа актуальных уменьшается с каждым днём, что мы и видим по приведённым результатам. Core i7, основанный на дизайне Ivy Bridge, на всех диаграммах находится выше аналогичных по внутреннему устройству Core i5. В итоге, игровая производительность трёхтысячной серии Core i5 оказывается на вполне ожидаемом уровне: эти процессоры однозначно лучше Core i5 двухтысячной серии, а иногда даже способны составить конкуренцию и Core i7-2700K. Параллельно отметим, что старший процессор компании AMD не выдерживает с современными интеловскими предложениями никакой конкуренции: его отставание по игровой производительности без всяких преувеличений можно назвать катастрофическим.

В дополнение к игровым тестам приведём и результаты синтетического бенчмарка Futuremark 3DMark 11, запущенного с профилем Performance.




Ничего принципиально нового не показывает и синтетический тест Futuremark 3DMark 11. Производительность Core i5 третьего поколения ложится ровно между Core i5 с прошлым дизайном и любыми процессорами Core i7, обладающими поддержкой технологии Hyper-Threading и немного более высокими тактовыми частотами.

Тесты в приложениях

Для измерения быстродействия процессоров при компрессии информации мы пользуемся архиватором WinRAR, при помощи которого с максимальной степенью сжатия архивируем папку с различными файлами общим объёмом 1.1 Гбайт.


В последних версиях архиватора WinRAR была существенно улучшена поддержка многопоточности, так что теперь скорость архивации стала серьёзно зависеть от количества имеющихся в распоряжении CPU вычислительных ядер. Соответственно, процессоры Core i7, усиленные технологией Hyper-Threading, и восьмиядерный процессор AMD FX-8150 демонстрируют здесь наилучшее быстродействие. Что же касается серии Core i5, то с ней всё как всегда. Core i5 с дизайном Ivy Bridge однозначно лучше старых, причём преимущество новинок над старичками составляет порядка 7 процентов для моделей, имеющих идентичную номинальную частоту.

Производительность процессоров при криптографической нагрузке измеряется встроенным тестом популярной утилиты TrueCrypt, использующим «тройное» шифрование AES-Twofish-Serpent. Следует отметить, что данная программа не только способна эффективно загружать работой любое количество ядер, но и поддерживает специализированный набор инструкций AES.


Всё как обычно, только процессор FX-8150 вновь находится в верхней части диаграммы. В этом ему помогает возможность выполнения восьми вычислительных потоков одновременно и хорошая скорость исполнения целочисленных и битовых операций. Что же касается Core i5 трёхтысячной серии, то они вновь безоговорочно превосходят своих предшественников. Причём, разница в производительности CPU с одинаковой декларируемой номинальной частотой достаточно существенна и составляет порядка 15 процентов в пользу новинок с микроархитектурой Ivy Bridge.

С выходом восьмой версии популярного пакета для научных вычислений Wolfram Mathematica мы решили вернуть его в число используемых тестов. Для оценки производительности систем в нём используется встроенный в эту систему бенчмарк MathematicaMark8.


Wolfram Mathematica традиционно относится к числу приложений, плохо «переваривающих» технологию Hyper-Threading. Именно поэтому на приведённой диаграмме первую позицию занимает Core i5-3570K. Да и результаты прочих Core i5 трёхтысячной серии весьма недурны. Все эти процессоры не только обгоняют своих предшественников, но и оставляют позади старший Core i7 с микроархитектурой Sandy Bridge.

Измерение производительности в Adobe Photoshop CS6 мы проводим с использованием собственного теста, представляющего собой творчески переработанный Retouch Artists Photoshop Speed Test, включающий типичную обработку четырёх 24-мегапиксельных изображений, сделанных цифровой камерой.


Новая микроархитектура Ivy Bridge обеспечивает примерно 6-процентное превосходство аналогичных по тактовой частоте Core i5 третьего поколения над своими более ранними собратьями. Если же сопоставить между собой процессоры с одинаковой стоимостью, то носители новой микроархитектуры попадают в ещё более выгодное положение, отвоёвывая у Core i5 двухтысячной серии более 10 процентов быстродействия.

Производительность в Adobe Premiere Pro CS6 тестируется измерением времени рендеринга в формат H.264 Blu-Ray проекта, содержащего HDV 1080p25 видеоряд с наложением различных эффектов.


Нелинейный видеомонтаж – хорошо распараллеливаемая задача, так что до Core i7-2700K новые Core i5 с дизайном Ivy Bridge дотянуться не в состоянии. Зато своих предшественников-одноклассников, использующих микроархитектуру Sandy Bridge, они превосходят по скорости примерно на 10 процентов (при сравнении моделей с одинаковой тактовой частотой).

Для измерения скорости перекодирования видео в формат H.264 используется x264 HD Benchmark 5.0, основанный на измерении времени обработки исходного видео в формате MPEG-2, записанного в разрешении 1080p с потоком 20 Мбит/сек. Следует отметить, что результаты этого теста имеют огромное практическое значение, так как используемый в нём кодек x264 лежит в основе многочисленных популярных утилит для перекодирования, например, HandBrake, MeGUI, VirtualDub и проч.




Картина при перекодировании видеоконтента высокого разрешения вполне привычна. Преимущества микроархитектуры Ivy Bridge выливаются в примерно 8-10-процентное превосходство новых Core i5 над старыми. Необычно же выглядит высокий результат восьмиядерного FX-8150, который при втором проходе кодирования обгоняет даже Core i5-3570K.

По просьбам наших читателей используемый набор приложений пополнился и ещё одним бенчмарком, показывающим скорость работы с видеоконтентом высокого разрешения, - SVPmark3. Это специализированный тест производительности системы при работе с пакетом SmoothVideo Project, направленным на повышение плавности видео путём добавления в видеоряд новых кадров, содержащих промежуточные положения объектов. Приведённые в диаграмме числа – это результат бенчмарка на реальных FullHD-видеофрагментах без привлечения к расчётам мощностей графической карты.


Диаграмма очень похожа на результаты второго прохода перекодирования кодеком x264. Это недвусмысленно намекает, что большинство задач, связанных с обработкой видеоконтента высокого разрешения, создают примерно одинаковую по своему характеру вычислительную нагрузку.

Вычислительную производительность и скорость рендеринга в Autodesk 3ds max 2011 мы измеряем, прибегая к услугам специализированного теста SPECapc for 3ds Max 2011.




Честно говоря, ничего нового нельзя сказать и про производительность, наблюдаемую при финальном рендеринге. Распределение результатов можно назвать стандартным.

Тестирование скорости финального рендеринга в Maxon Cinema 4D выполняется путём использования специализированного теста Cinebench 11.5.


Ничего нового не показывает и диаграмма результатов Cinebench. Новые Core i5 трёхтысячной серии в очередной раз оказывается заметно лучше своих предшественников. Даже самый младший из них, Core i5-3450, уверенно обходит Core i5-2500K.

Энергопотребление


Одним из основных плюсов 22-нм техпроцесса, применяемого для выпуска процессоров поколения Ivy Bridge, Intel называет уменьшившееся тепловыделение и энергопотребление полупроводниковых кристаллов. Это нашло отражение и в официальных спецификациях Core i5 третьего поколения: для них установлен не 95-ваттный, как раньше, а 77-ваттный тепловой пакет. Так что превосходство новых Core i5 над предшественниками в экономичности сомнений не вызывает. Но каков масштаб этого выигрыша на практике? Следует ли рассматривать экономичность трёхтысячной серии Core i5 их серьёзным конкурентным преимуществом?

Чтобы ответить на эти вопросы, мы провели специальное тестирование. Используемый нами в тестовой системе новый цифровой блок питания Corsair AX1200i позволяет осуществлять мониторинг потребляемой и выдаваемой электрической мощности, чем мы и пользуемся для наших измерений. На следующих ниже графиках, если иное не оговаривается отдельно, приводится полное потребление систем (без монитора), измеренное «после» блока питания и представляющее собой сумму энергопотребления всех задействованных в системе компонентов. КПД же самого блока питания в данном случае не учитывается. Во время измерений нагрузка на процессоры создавалась 64-битной версией утилиты LinX 0.6.4-AVX. Кроме того, для правильной оценки энергопотребления в простое мы активировали турбо-режим и все имеющиеся энергосберегающие технологии: C1E, C6 и Enhanced Intel SpeedStep.


В состоянии простоя системы со всеми принявшими участие в тестах процессорами показывают примерно одинаковое энергопотребление. Конечно, оно не полностью идентично, различия на уровне десятых долей ватта имеют место, но мы решили не переносить их на диаграмму, так как столь несущественная разница скорее относится к погрешности измерений, нежели к наблюдаемым физическим процессам. Кроме того, в условиях близких величин потребления процессоров серьёзное влияние на общее энергопотребление начинает оказывать эффективность и настройки преобразователя питания материнской платы. Поэтому, если вы действительно обеспокоены величиной потребления в покое, в первую следует искать материнские платы с наиболее эффективным преобразователем питания, а процессор, как показывают полученные нами результаты, из числа LGA 1155-совместимых моделей, может подойти любой.


Однопоточная нагрузка, при которой у процессоров с турбо-режимом частота повышается до максимальных значений, приводит к заметным различиям в потреблении. В первую очередь в глаза бросаются совершенно нескромные аппетиты AMD FX-8150. Что же касается LGA 1155-моделей CPU, то те из них, что базируются на 22-нм полупроводниковых кристаллах, действительно заметно экономичнее. Различие в потреблении четырёхъядерных Ivy Bridge и Sandy Bridge, работающих на аналогичной тактовой частоте, составляет порядка 4-5 Вт.


Полная многопоточная вычислительная нагрузка усугубляет различия в потреблении. Система, оснащённая процессорами Core i5 третьего поколения, выигрывает в экономичности у аналогичной платформы с процессорами на предыдущем дизайне порядка 18 Вт. Это идеально коррелирует с разницей в теоретических показателях расчетного тепловыделения, заявляемых для своих процессоров компанией Intel. Таким образом, с точки зрения соотношения производительности на ватт процессорам Ivy Bridge среди CPU для настольных компьютеров нет равных.

Производительность графического ядра


Рассматривая современные процессоры для платформы LGA 1155, следует уделить внимание и встроенным в них графическим ядрам, которые с внедрением микроархитектуры Ivy Bridge стали более быстрыми и более совершенными с точки зрения имеющихся возможностей. Однако вместе с этим Intel предпочитает устанавливать в свои процессоры для настольного сегмента урезанную версию видеоядра с сокращённым с 16 до 6 числом исполнительных устройств. Фактически, полноценная графика присутствует лишь в процессорах Core i7 и в Core i5-3570K. Большинство же десктопных Core i5 трёхтысячной серии, очевидно, окажутся в графических 3D-приложениях достаточно слабы. Впрочем, вполне вероятно, что даже имеющаяся урезанная графическая мощность удовлетворит некоторое количество пользователей, не нацеленных рассматривать встроенную графику как трёхмерный видеоускоритель.

Начать тестирование встроенной графики мы решили с теста 3DMark Vantage. Результаты, полученные в разных версиях 3DMark, – очень популярная метрика для оценки средневзвешенной игровой производительности видеокарт. Выбор же версии Vantage обусловлен тем, что она использует DirectX десятой версии, поддерживаемой всеми принимающими в испытаниях видеоускорителями, в том числе и графикой процессоров Core с дизайном Sandy Bridge. Заметим, что помимо полного набора процессоров семейства Core i5, работающих со своими интегрированными графическими ядрами, мы включили в тесты и показатели производительности системы на базе Core i5-3570K с дискретной графической картой Radeon HD 6570. Эта конфигурация будет служить для нас своеобразным ориентиром, позволяющим представить себе место интеловских графических ядер HD Graphics 2500 и HD Graphics 4000 в мире дискретных видеоускорителей.




Устанавливаемое Intel в большинство своих процессоров для настольных компьютеров графическое ядро HD Graphics 2500 по своей 3D-производительности оказывается похоже на HD Graphics 3000. Зато старший вариант интеловской графики из процессоров Ivy Bridge, HD Graphics 4000, выглядит огромным шагом вперёд, его производительность более чем вдвое превосходит скорость лучшего встроенного ядра прошлого поколения. Впрочем, любой из имеющихся вариантов Intel HD Graphics пока ещё нельзя назвать обладающим приемлемой 3D-производительностью по меркам настольных систем. Например, видеокарта Radeon HD 6570, которая относится к нижнему ценовому сегменту и стоит порядка $60-70, способна предложить существенно лучшее быстродействие.

В дополнение к синтетическому 3DMark Vantage, мы провели и несколько тестов в реальных игровых приложениях. В них мы использовали низкие настройки качества графики и разрешение 1650x1080, которое на данный момент мы считаем минимальным из интересных пользователям десктопов.








В целом, в играх наблюдается примерно одинаковая картина. Встроенная в Core i5-3570K старшая версия графического ускорителя обеспечивает среднее число кадров в секунду на достаточно неплохом (для интегрированного решения) уровне. Однако Core i5-3570K остаётся единственным процессором из Core i5 третьего поколения, видеоядро которого способно выдавать приемлемую графическую производительность, которой, при некоторых послаблениях в качестве картинки, может хватать для комфортного восприятия значительного числа нынешних игр. Все прочие CPU этого класса, в которых используется ускоритель HD Graphics 2500 с уменьшенным количеством исполнительных устройств, выдают почти вдвое более низкую скорость, чего по современным меркам явно недостаточно.

Преимущество графического ядра HD Graphics 4000 над встроенным ускорителем прошлого поколения HD Graphics 3000 колеблется в достаточно широких пределах и в среднем составляет около 90 процентов. С предыдущим флагманским интегрированным решением легко может сравниться младшая версия графики из Ivy Bridge, HD Graphics 2500, которая устанавливается в большинство десктопных процессоров Core i5 трёхтысячной серии. Что же касается прошлого варианта общеупотребительного графического ядра, HD Graphics 2000, то его производительность теперь выглядит крайне низкой, в играх оно отстаёт от того же HD Graphics 2500 в среднем на 50-60 процентов.

Иными словами, 3D-производительность графического ядра процессоров Core i5 действительно сильно возросла, но, по сравнению с тем количеством кадров, которое способен выдать ускоритель Radeon HD 6570, всё это кажется мышиной вознёй. Даже встроенный в Core i5-3570K ускоритель HD Graphics 4000 представляет собой не слишком хорошую альтернативу десктопным 3D-ускорителям нижнего уровня, более же распространённый вариант интеловской графики, можно сказать, вообще для большинства игр неприменим.

Однако далеко не все пользователи рассматривают встроенные в процессоры видеоядра как игровые трёхмерные ускорители. Значительная доля потребителей заинтересована в HD Graphics 4000 и HD Graphics 2500 благодаря их медийным возможностям, альтернатив которым в нижней ценовой категории попросту нет. Здесь в первую очередь мы имеем в виду технологию Quick Sync, предназначенную для быстрого аппаратного кодирования видео в формат AVC/H.264, вторая версия которой реализована в процессорах семейства Ivy Bridge. Поскольку в новых графических ядрах Intel обещает существенное увеличение скорости транскодирования, мы отдельно протестировали и функционирование Quick Sync.

Во время практических испытаний мы измерили время выполнения перекодирования одного 40-минутного эпизода популярного сериала, закодированного в формате 1080p H.264 с битрейтом 10 Мбит/сек для просмотра на Apple iPad2 (H.264, 1280x720, 3Mbps). Для тестов использовалась поддерживающая технологию Quick Sync утилита Cyberlink Media Espresso 6.5.2830.


Ситуация здесь отличается от того, что наблюдалось в играх, кардинально. Если раньше Intel не дифференцировал Quick Sync в процессорах с разными версиями графического ядра, то теперь всё поменялось. Эта технология в HD Graphics 4000 и в HD Graphics 2500 работает с примерно вдвое отличающейся скоростью. Причём, обычные процессоры Core i5 трёхтысячной серии, в которые устанавливается ядро HD Graphics 2500, перекодируют видео высокого разрешения посредством Quick Sync примерно с той же производительностью, что и их предшественники. Прогресс же в быстродействии виден только по результатам Core i5-3570K, где присутствует «продвинутое» графическое ядро HD Graphics 4000.

Разгон


Разгон процессоров Core i5, относящихся к поколению Ivy Bridge, может идти по двум принципиально различным сценариям. Первый из них касается разгона процессора Core i5-3570K, изначально ориентированного на оверклокинг. Этот CPU имеет незаблокированный множитель, и увеличение его частоты выше номинальных значений выполняется по типичному для платформы LGA 1155 алгоритму: посредством наращивания коэффициента умножения поднимаем частоту работы процессора и при необходимости добиваемся стабильности путём подачи на CPU повышенного напряжения и улучшения его охлаждения.

Без поднятия напряжения питания наш экземпляр процессора Core i5-3570K разогнался до 4.4 ГГц. Для обеспечения стабильности в этом режиме потребовалось лишь простое переключение функции материнской платы Load-Line Calibration в положение High.


Дополнительное увеличение напряжения питания процессора до 1.25 В позволило достичь стабильной работоспособности на более высокой частоте - 4.6 ГГц.


Это – вполне типичный результат для CPU поколения Ivy Bridge. Такие процессоры разгоняются обычно немного хуже, чем Sandy Bridge. Причина, как предполагается, кроется в последовавшем за внедрением 22-нм технологии производства уменьшении площади полупроводникового процессорного кристалла, ставящем вопрос о необходимости увеличения плотности теплового потока при охлаждении. В то же время используемый Intel внутри процессоров термоинтерфейс, как и обычно применяемые способы снятия тепла с поверхности процессорной крышки, решению этой проблемы не способствуют.

Впрочем, как бы то ни было, разгон до 4.6 ГГц – очень неплохой результат, особенно если принять во внимание тот факт, что процессоры Ivy Bridge на одинаковой с Sandy Bridge тактовой частоте выдают примерно на 10 процентов лучшее быстродействие благодаря своим микроархитектурным усовершенствованиям.

Второй сценарий разгона касается остальных процессоров Core i5, которые свободного множителя лишены. Хотя платформа LGA 1155 относится к увеличению частоты базового тактового генератора крайне отрицательно, и теряет стабильность уже при установке формирующей частоты на 5 процентов выше номинально значения, разгонять процессоры Core i5, не относящиеся к K-серии, всё-таки можно. Дело в том, что Intel позволяет ограниченно увеличивать и их множитель, наращивая его не более чем на 4 единицы выше номинала.


Учитывая же, что при этом сохраняется работоспособность технологии Turbo Boost, которая для Core i5 с дизайном Ivy Bridge допускает 200-мегагерцовый разгон даже при загрузке всех процессорных ядер, тактовую частоту в общем итоге можно «накрутить» на 600 МГц выше штатного значения. Иными словами, Core i5-3570 можно разогнать до 4.0 ГГц, Core i5-3550 – до 3.9 ГГц, Core i5-3470 – до 3.8 ГГц, а Core i5-3450 – до 3.7 ГГц. Что мы успешно подтвердили в ходе наших практических экспериментов.

Core i5-3570:


Core i5-3550:


Core i5-3470:


Core i5-3450:


Надо сказать, что такой ограниченный разгон выполняется даже проще, чем в случае процессора Core i5-3570K. Не столь существенное приращение тактовой частоты не влечёт за собой появление проблем со стабильностью даже при использовании номинального напряжения питания. Поэтому, скорее всего, единственное, что потребуется для оверклокинга процессоров Ivy Bridge линейки Core i5, не относящихся к K-серии, это – поменять значение множителя в BIOS материнской платы. Достигаемый же при этом результат, хотя и нельзя назвать рекордным, скорее всего вполне устроит подавляющее большинство неискушённых пользователей.

Выводы


Мы уже неоднократно говорили о том, что микроархитектура Ivy Bridge стала удачным эволюционным обновлением процессоров Intel. Производственная полупроводниковая технология с 22-нм нормами и многочисленные микроархитектурные улучшения сделали новинки как более быстродействующими, так и более экономичными. Это относится к любым Ivy Bridge вообще и к рассмотренным в этом обзоре десктопным процессорам Core i5 трёхтысячной серии в частности. Сопоставляя новую линейку процессоров Core i5 с тем, что мы имели год назад, нетрудно заметить целый букет существенных улучшений.

Во-первых, новые Core i5, основанные на дизайне Ivy Bridge, стали производительнее своих предшественников. Несмотря на то, что Intel не прибегла к увеличению тактовых частот, преимущество новинок составляет порядка 10-15 процентов. Даже самый медленный из десктопных Core i5 третьего поколения, процессор Core i5-3450, обгоняет Core i5-2500K в большинстве тестов. А старшие представители свежей линейки порой могут соперничать с процессорами более высокого класса, Core i7, основанными на микроархитектуре Sandy Bridge.

Во-вторых, новые Core i5 стали заметно экономичнее. Их тепловой пакет установлен в 77 Ватт, и это находит отражение на практике. При любой нагрузке компьютеры, использующие Core i5 с дизайном Ivy Bridge, потребляют на несколько ватт меньше, чем аналогичные системы, где используются CPU класса Sandy Bridge. Причём, при предельной вычислительной нагрузке выигрыш может достигать почти двух десятков ватт, а это – весьма существенная экономия по современным меркам.

В-третьих, в новых процессорах нашло место существенно улучшенное графическое ядро. Младший вариант графического ядра процессоров Ivy Bridge работает по меньшей мере не хуже, чем HD Graphics 3000 из старших процессоров Core второго поколения, и к тому же, поддерживая DirectX 11, имеет более современные возможности. Что же касается флагманского интегрированного ускорителя HD Graphics 4000, который используется в процессоре Core i5-3570K, то он даже позволяет получать вполне приемлемую частоту кадров в достаточно современных играх, правда, при значительных послаблениях в настройках качества.

Единственный спорный момент, который мы заметили у Core i5 третьего поколения, это – слегка более низкий разгонный потенциал, нежели у процессоров класса Sandy Bridge. Однако этот недостаток проявляется лишь в единственной оверклокерской модели Core i5-3570K, где изменение коэффициента умножения искусственно не ограничивается сверху, и к тому же, он вполне компенсируется более высокой удельной производительностью, развиваемой микроархитектурой Ivy Bridge.

Иными словами, мы не видим ни одной причины, по которой, выбирая процессор среднего класса для платформы LGA 1155, предпочтение должно быть отдано «старичкам», использующим полупроводниковые кристаллы поколения Sandy Bridge. Тем более что цены, установленные Intel на более прогрессивные модификации Core i5, вполне гуманны и близки к стоимости устаревающих процессоров прошлого поколения.