Введение
Итак, перед Вами четвертая серия тестирования блоков питания стандарта ATX. На этот раз под мою горячую руку попались одиннадцать блоков разных производителей, продающихся как в составе корпусов, так и отдельно.
Тестирование блоков проводилось в соответствии с
описанной мною методикой – на постоянной нагрузке, собранной на мощных полевых транзисторах и управляемой с компьютера. Измерения напряжений производились как блоком «Формоза» PowerCheck 2.0, так и отдельным цифровым мультиметром. Все осциллограммы снимались цифровым осциллографом-приставкой
ETC M221 с разверткой 10мкс/дел и чувствительностью 50мВ/дел (использовался осциллографический щуп
HP-9100 с делителем 1:1).
Так как оригинальная программа от «Формозы» довольно неудобна для обработки результатов (медленная работа, полное отсутствие настроек), то мной была написана отдельная программа, предназначенная только для просмотра и обработки результатов, полученных на установке:
Она позволяет читать файлы с данными, автоматически усредняя по заданному количеству точек, сохранять обработанные данные в файл, отображать на графике указанные пользователем токи и напряжения, автоматически масштабировать график по горизонтали (разбивая его на указанное пользователем количество страниц), вручную масштабировать отдельные участки графика и сохранять график или его отдельные участки в графический файл.
При обработке результатов я усреднял исходные данные по 10 точкам – так как период в 1мс, с которым сохраняет данные родная программа, избыточен, а усреднение позволяет устранить случайные шумы и тем самым улучшить вид графика, заодно и уменьшив общий объем данных.
Относительно же самих результатов хочу заметить, что блоки питания тестировались во всех допустимых режимах, включая минимальную нагрузку по шине +12В и максимальную по +5В. В реальном компьютере такие ситуации не встречаются, поэтому небольшой выход напряжения +12В за допустимые пределы (напомню, что допуск на все положительные напряжения – 5%) я не считаю критичным. Но – только небольшой и только для +12В. Если напряжение на шине +12В начинает зашкаливать за 13В, или хорошо (по идее) стабилизированное +5В выходит за пределы допуска – это повод задуматься о качестве блока питания. Для прочих же блоков основным результатом является относительное изменение напряжения во всем диапазоне нагрузок – в таблицах я привожу максимальное и минимальное наблюдавшееся напряжение и их разницу в процентах.
Отмечу, что все исследуемые блоки претендуют на возможность работы с Pentium 4, для чего требуется соответствие стандарту ATX12V. Соответственно, с точки зрения этого стандарта я и буду рассматривать их качество (по сравнению с ATX в чистом виде, он более требователен к нагрузочной способности шины +12В).
Приступим.
Delta Electronics DPS-300TB rev. 01
Этот блок питания сделан одним из крупнейших производителей БП – компанией
Delta Electronics. Однако особый интерес он вызывает не только именитым производителем, но и ценой – стоят они в районе $20, что для блока такого класса очень немного.
Блок производит крайне приятное впечатление аккуратностью монтажа – детали высоковольтных цепей дополнительно изолированы термоусадочной трубкой, все транзисторы и диодные сборки посажены на термопасту и закреплены болтами М3 с гайками… На плате, трансформаторе и на дросселе PFC (да, этот блок питания – один из немногих в обзоре, снабженный пассивным PFC) стоит маркировка “Lite-On”, однако делала ли компания
Lite-On Electronics Inc. только отдельные компоненты или же весь блок питания, и кто в последнем случае его разрабатывал – остается неизвестным.
Блок оборудован терморегулятором скорости вращения вентилятора, и можно смело сказать, что его работа заметна – сразу после включения вентилятор еле крутится и лишь при серьезной нагрузке разгоняется до полных оборотов. Здесь хочу отметить, что вентиляторы в блоках Delta сравнительно слабые, рассчитанные только на охлаждение самого БП – поэтому в корпусе компьютера обязательно должен стоять отдельный вытяжной вентилятор. С другой стороны, благодаря этому блоки Delta были самыми тихими из побывавших у меня.
Разумеется, все положенные фильтры аккуратно запаяны – наличествует полноценный сетевой фильтр, а также дроссели на всех мощных выходах (т.е. +5В, +12В и +3,3В). Емкость входных конденсаторов – 470мкФ, на выходе +12В стоит один конденсатор
Chemi-Con серии “KZE” и емкостью 1200мкФ, на +5В – два
Rubycon “ZL” по 2200мкФ, на выходе +3,3В – два
Taicon “PW” по 2200мкФ.
После такого трудно было ожидать заметного уровня пульсаций на выходе – и блок питания мои ожидания не обманул. На шине +5В пульсации практически незаметны даже при максимальной нагрузке (“практически незаметны” на моем оборудовании означает, что их величина не превышала 5мВ), на шине +12В размах пульсаций при максимальной нагрузке составляет около 15мВ, что является превосходным результатом.
Диапазон изменения напряжений приведен в таблице, а на
отдельном рисунке Вы можете увидеть весь график испытания.
DPS-300TB-1
| +12V | +5V | +3,3V
|
---|
min | 11,81 | 4,94 | 3,31
|
max | 12,92 | 5,15 | 3,39
|
min/max | 8,6% | 4,1% | 2,4%
|
В заключение хотелось бы отметить одну особенность этого блока, из-за которой не все материнские платы с ним работают. Дело в том, что для запуска материнской плате необходимо наличие сигнала Power OK с блока питания, показывающего, что напряжения питания вошли в допустимые пределы. В рассматриваемом блоке сигнал Power OK формируется в микросхеме
TSM111 от STMicroelectronics, в которой используется выход с открытым коллектором. Это означает, что для нормальной работы между выходом и +5В должен быть включен так называемый pull-up резистор; на плате блока питания место под резистор предусмотрено, но сам резистор не впаян. На приведенной ниже фотографии это R314 справа от микросхемы:
Выход прост – достаточно, даже не вскрывая самого блока, подключить между Power OK (серый провод) и +5В (красный провод) резистор сопротивлением 1...10кОм любой мощности. После такой доработки блок питания должен нормально работать с любыми материнскими платами. Дабы сразу не терять гарантию на блок, можно для проверки сначала воткнуть выводы резистора непосредственно в разъем питания материнской платы; потом резистор лучше все-таки припаять...
Delta Electronics DPS-300TB rev. 02
За названием, фактически неотличимым от предшественника, скрывается совершенно другой блок. И если внешний вид отличается слабо (хотя, взяв оба этих блока в руки, можно обнаружить, что у них разная конструкция корпуса), то внутреннее устройство – радикально:
Здесь уже нет надписей Lite-On – весь блок сделан Delta Electronics. Так же, как и предшественник, он оборудован пассивным PFC, наличествует сетевой фильтр и дроссели на выходе, все транзисторы и диодные сборки посажены на термопасту... В общем, по качеству исполнения блоки идентичны – ни к первому, ни ко второму претензий нет.
Больше всего обрадовал уровень пульсаций - точнее говоря, их отсутствие. Даже на полной нагрузке и даже на сравнительно “шумной” шине +12В пульсации были на уровне посторонних шумов, т.е. неразличимы.
Также хотелось бы отдельно отметить работу температурного контроля и вообще охлаждение блока. Даже на полной нагрузке (285Вт!) у блока питания лишь задняя стенка напротив радиаторов становится теплой, а выходящий из вентилятора воздух – по-прежнему холодный, причем вентилятор крутится с такой скоростью, что его практически не слышно. Впрочем, в этом кроется и недостаток, такой же, как и в предыдущем блоке – для нормального охлаждения системного блока требуется дополнительный вентилятор на его задней стенке, вытягивающий горячий воздух от процессора.
Единственная неприятность с этим блоком возникла с шиной +5В – блок питания ограничивал ток на уровне около 27А. Чтобы не вызывать срабатывания защиты, максимальная нагрузка на +5В была соответственно уменьшена. Однако общая мощность блока питания ничуть не ниже заявленной – пропорциональное увеличение нагрузки на шину +3,3В срабатывания защиты не вызывало.
DPS-300TB-2
| +12V | +5V | +3,3V
|
---|
min | 11,80 | 4,98 | 3,31
|
max | 12,86 | 5,21 | 3,36
|
min/max | 8,2% | 4,4% | 1,5%
|
Графики напряжений Вы можете увидеть на
отдельном рисунке.
FKI FV-300N20
Этот блок, установленный в корпусе FKI
FK-603, выпускается компанией
Fong Kai Industrial Co.Сетевой фильтр смонтирован полностью и размещен целиком на основной плате. Фильтрующие конденсаторы –
Fuhjyyu серий “LP” и “TM”, на входе стоят два конденсатора емкостью по 470мкФ; на выходе на шине +12В – один 2200мкФ, +5В – 3300мкФ и 2200мкФ, +3,3В – два конденсатора по 2200мкФ. На шинах +5В и +3,3В стоят дополнительные сглаживающие дроссели. Скорость вращения вентилятора регулируется термодатчиком.
Блок оборудован четырьмя разъемами для питания жестких дисков и CD и двумя для питания дисководов. К сожалению, провода сечением 20AWG – при том, что стандартом рекомендуются более толстые провода 18AWG.
Осциллограммы напряжений на выходах радуют глаз – даже при максимальной нагрузке нет заметных пульсаций. Для примера приведу лишь одну осциллограмму, шина +12В при токе нагрузки 15А (максимально допустимом):
А вот со
стабилизацией выходных напряжений блок справляется чуть хуже, чем уже рассмотренные блоки Delta:
FV300
| +12V | +5V | +3,3V
|
---|
min | 11,49 | 4,86 | 3,31
|
max | 12,79 | 5,15 | 3,36
|
min/max | 10,2% | 5,6% | 1,5%
|
В общем и целом блок можно, пожалуй, отнести к хорошему, добротному среднему классу.
Fortron/Source FSP300-60BTV
Блоки с маркировкой FSP несомненно известны читателям по корпусам
InWin и
AOpen – правда, в последнее время InWin отказался от услуг компании
FSP Group и наладил собственное производство БП.
Выглядит блок весьма солидно:
К внутреннему устройству никаких нареканий не возникает – аккуратный монтаж, полностью собранный сетевой фильтр, большие радиаторы на транзисторах, терморегулятор скорости вращения вентилятора (он собран на отдельной плате, прикрученной прямо к радиатору – это хорошо видно на фото).
На входе стоят конденсаторы
Teapo емкостью 680мкФ (что весьма неплохо для 300-ваттного блока), на выходе емкость конденсаторов (используются Fuhjyyu серии “TMR”) впечатляет еще больше – на шине +5В стоят два конденсатора по 4700мкФ, на +12В – один 2200мкФ, на +3,3В – один конденсатор 3300мкФ и еще один 4700мкФ, шины +5В и 3,3В включены через дроссели.
Однако, как ни странно, пульсации выходных напряжений достаточно заметны, хоть и лежат в пределах допусков, особенно на +12В:
На +5В пульсации также присутствуют, но по амплитуде заметно меньше:
Напряжение +5В и +12В блок держит очень хорошо, но вот с +3,3В не повезло – оно гуляет аж на 6%, опускаясь ниже минимально допустимого (3,14В). Графики зависимости напряжения от нагрузки, как всегда, можно посмотреть на отдельной
картинке. FSP300
| +12V | +5V | +3,3V
|
---|
min | 11,91 | 4,92 | 3,12
|
max | 12,79 | 5,14 | 3,32
|
min/max | 6,9% | 4,3% | 6,0%
|
Блок снабжен шестью разъемами для подключения винчестеров и двумя – для дисководов. Все провода имеют сечение 18AWG, так что с этой стороны никаких претензий предъявить невозможно.
GIT G-300PT
Этот блок из корпуса
Noblesse изготовлен компанией
Herolchi (HEC).
Если судить по внешнему виду – типичный представитель среднего класса, без каких-либо выдающихся признаков. Фильтр распаян полностью, но первая его часть вынесена на отдельную платку (в дорогих блоках такое практически не встречается). Во входном выпрямителе используются конденсаторы CapXon серии “LP” емкостью 470мкФ, в выходных – конденсаторы Pce-tur и CapXon серии “GL”. Суммарная емкость конденсаторов на шине +5В – 3200мкФ, на шине +12В – 2200мкФ и на +3,3В – 2670мкФ; дроссель предусмотрен только на шине +3,3В. В блоке предусмотрен терморегулятор скорости вращения вентилятора. Для подключения нагрузки есть 5 разъемов для винчестеров и 2 для дисководов, все провода – сечением 18AWG.
А вот до тестов, к сожалению, дело не дошло. Дело в том, что на мощности около 270-280Вт срабатывала защита от перегрузки, а при подборе максимальной мощности в ручном режиме блок умер с громким хлопком минут через десять работы. Вскрытие показало, что в лучший мир отправился один из транзисторов, нагревшись при этом так, что на нем расплавилась полистироловая изолирующая шайба:
HEC 300ER
Еще один блок производства Herolchi, но на этот раз снят он был с корпуса
Genius Venus 2.По сравнению с предыдущим блоком, сетевой фильтр сократился вдвое – исчезла платка с первым дросселем, но распаянные на основной плате детали остались. Зато емкость конденсаторов в высоковольтном выпрямителе увеличилась до 680мкФ, а на шине +5В – до 5300мкФ (два CapXon по 1000мкФ и один Pce-tur на 3300мкФ). Правда, в качестве компенсации оная емкость на шине +3,3В уменьшилась до мизерных 470мкФ, к тому же вместо дросселя оказалась “фильтрующая перемычка”... а по прочим шинам с большими токами дросселей и в предыдущем блоке не было. Емкость по шине +12В сохранилась – 2200мкФ, только поменялся производитель – с CapXon на Pce-tur. Помимо конденсаторов и дросселей, производитель пожертвовал и температурным мониторингом – в этом блоке вентилятор подключен непорседственно к +12В. Зато прибавился еще один разъем для питания периферии – теперь их стало шесть... Вот такой вот закон сохранения.
Но самое веселое началось при попытке снять характеристики блока. Проблема заключалась в том, что после небольшого прогрева защита от перегрузки начинала срабатывать на мощности около 200Вт. И это при том, что блок заявлен как 300-ваттный! Фактически на полной мощности удалось снять только зависимость выходных напряжений от тока нагрузки, которую можно увидеть на
рисунке, а минимальные и максимальные значения напряжений – в таблице:
300ER
| +12V | +5V | +3,3V
|
---|
min | 11,62 | 4,91 | 3,26
|
max | 13,27 | 5,15 | 3,31
|
min/max | 12,4% | 4,7% | 1,5%
|
Если нагрузку по шинам +3,3В и +5В блок держит хорошо, то +12В могут лишь огорчить. Забегая вперед, скажу, что как по стабильности, так и по абсолютному значению этого напряжения HEC-300ER занял третье с конца место, обогнав лишь блоки IPower.
Точно такая же картина наблюдалась и с пульсациями – если по шине +5В они держались на невысоком уровне, то на +12В были более чем заметны:
Шина +5В Шина +12В Причем эта осциллограмма снята на суммарной мощности всего 185Вт, ибо после прогрева на большей мощности блок стабильно работать отказывался.
Спустя некоторое время после начала тестирования от блока начало попахивать паленой пластмассой. Вскрытие показало ту же проблему, что и у GIT G-300PT – начала плавиться шайба на одном из транзисторов:
Судьба такого блока предрешена – из-за расплавления шайбы транзистор перестает прижиматься к радиатору и начинает греться еще сильнее... шайба плавится тоже быстрее... замкнутый круг, приводящий к гибели транзистора от перегрева. Что и случилось минут через двадцать работы на мощности 185Вт (sic!) – сверкнула молния, грянул гром, испарился предохранитель, и раскололся пополам транзистор:
Впечатляет, не так ли?
Напрашивается вывод, что у двух сгоревших блоков HEC имеется серьезный конструктивный недостаток – я не вдавался в подробности схемотехники, но такие «эффекты» могут возникать, скажем, при слишком пологих фронтах импульсов, переключающих ключевые транзисторы; при этом в момент переключения возникает заметный сквозной ток, сильно подогревающий транзисторы.
IPower LC-B250ATX
Блок питания, поставляемый в составе корпуса
E-Star model 8870 “Extra”. Бесподобный образец работы китайской инженерной мысли:
Внушает уважение труд людей, способных заставить блок питания работать даже при таком количестве отсутствующих деталей... Сетевого фильтра нет вообще – только перемычки на месте дросселей. Та же участь постигла и выходные дроссели – их просто нет. И не только их, а еще и половины фильтрующих конденсаторов на выходе блока – как правило, на каждую шину ставят по два конденсатора, до и после дросселя, здесь же один их них исчез вместе с дросселем. Итого, емкость конденсаторов высоковольтного выпрямителя – 330мкФ, выходные конденсаторы по всем шинам – по 1000мкФ на каждую шину, производитель конденсаторов -
Luxon Electronics (маркировка “G-Luxon”). Но на этом экономия не заканчивается! В блоке отсутствует даже изолирующая пластиковая прокладка между корпусом и высоковольтной частью схемы... Качество монтажа не просто низкое, оно местами кошмарное – при взгляде на некоторые детали кажется, что их просто воткнули как получилось, а потом сверху шлепнули побольше припоя, чтобы не отвалилось...
Из прочего можно отметить всего четыре разъема питания винчестеров и один – дисковода, расположенные на коротких проводах сечения 20AWG. Терморегулятор отсутствует, да и трудно было после увиденного ожидать его найти.
Ясно, что чудес от этого блока ожидать было трудно. Он их и не показал, а показал вместо этого нестабильность напряжения +12В 15% (не говоря уж о максимальном абсолютном значении этого напряжения среди всех протестированных блоков) и +5В – 7%.
LCB250
| +12V | +5V | +3,3V
|
---|
min | 11,52 | 4,89 | 3,21
|
max | 13,55 | 5,26 | 3,32
|
min/max | 15,0% | 7,0% | 3,3%
|
График изменения напряжений можно посмотреть на
рисунке. Причем, если разглядывать отдельные части графика с увеличением (разумеется, не на приведенном скриншоте, а при обработке исходных данных), видно, что после резкого изменения нагрузки напряжения выходят на постоянный уровень лишь спустя примерно 500мс, что является очень медленной реакцией на изменение нагрузки.
Не радовали и осциллограммы. На +12В блок показал самый большой размах пульсаций среди всех протестированных:
Причем при уменьшении мощности нагрузки вдвое размах пульсаций уменьшался лишь на 10%. Впрочем, и на +5В блок явно выделялся среди прочих – размах пульсаций превышал 50мВ:
Как ни странно, испытания он пережил – но, судя по всему, на последнем дыхании. До радиаторов стало возможным дотронуться лишь через четверть часа после выключения блока, на дросселе групповой стабилизации расплавился и стек на окружающие конденсаторы герметик, которым он был залит, а в процессе тестирования дующий из блока воздух был даже не теплым, а горячим.
IPower LC-B300ATX
Еще один блок того же производителя, на этот раз из корпуса
E-Star 8870 “Classica”.
Эволюционное развитие предыдущего блока. На радиаторах появилось сравнительно неплохое оребрение, в сетевом фильтре появился хоть и плохонький (намотанный монтажным проводом в хлорвиниловой изоляции), но все же дроссель, на выходе тоже добавилось как дросселей, так и конденсаторов. Емкости конденсаторов высоковольтного выпрямителя увеличились до 470мкФ, на выходе по шине +12В теперь стоит конденсатор CapXon на 2200мкФ, по +5В – два G-Luxon по 2200мкФ каждый, на шине +3,3В теперь стоят два G-Luxon по 1000мкФ. Более того, на +5В и +3,3В появились дроссели. Количество разъемов питания также увеличилось – теперь их пять для винчестеров и два для дисководов; правда, провода так и остались тонкими 20AWG.
А вот на изолирующей прокладке между платой и корпусом сэкономили и в этом блоке.
Разумеется, увеличение емкости конденсаторов на абсолютные значения напряжений и коэффициент стабилизации повлиять не могло, и эти параметры столь же плохи, как и у менее мощного блока:
LCB300
| +12V | +5V | +3,3V
|
---|
min | 11,64 | 4,99 | 3,30
|
max | 13,30 | 5,27 | 3,37
|
min/max | 12,5% | 5,3% | 2,1%
|
А вот с пульсациями стало немного получше. На шине +5В они теперь – благодаря появлению дросселя и увеличению в четыре раза (!) емкости фильтрующих конденсаторов –стали несущественны:
Впрочем, на +12В картина вида «биение гордого сердца, песня о буревестнике и девятый вал» (В. Ерофеев, «Путешествие Москва – Петушки») хоть и уменьшилась количественно, но качественно сохранилась прекрасно:
Причем такая картина наблюдается только на нагрузке, близкой к максимальной. На половинной же нагрузке все тихо и спокойно:
Графики изменения напряжений в зависимости от нагрузки можно посмотреть на
отдельной картинке.
Macropower MP-300AR-PFC
Четвертый (после двух Delta и одного FSP) в данном обзоре блок с PFC. Этот блок устанавливается в недавно появившиеся в продаже корпуса ASUS
Ascot 6AR и на самом деле изготавливается уже знакомой нам компанией HEC. Впрочем, уже по очень солидному внешнему виду заметно, что продукция HEC ориентирована на разных потребителей, и этот блок имеет все шансы оказаться очень неплохим.
Внутри блок очень напоминает своего неудачного собрата – GIT G-300PT; впрочем, забегая вперед, скажу, что проблемы с перегревом транзисторов на MP-300AR я не заметил. Блок оборудован полноценным сетевым фильтром, емкость конденсаторов высоковольтного выпрямителя составляет 680мкФ (используются конденсаторы CapXon серии “LP”). На выходе по шине +5В стоит дроссель, два конденсатора Pce-tur по 1000мкФ каждый и один CapXon “GL” на 3300мкФ; на шине +12В – один Pce-tur на 2200мкФ; на шине +3,3В – дроссель, один конденсатор Pce-tur на 1000мкФ и один CapXon “GL” 2200мкФ. Вентилятор включен через терморегулятор.
Отдельно хочу отметить, что блок оборудован аж восемью разъемами для питания винчестеров; все прочее стандартно – 2 разъема для дисководов, ATX, ATX12V и AUX разъемы. Разумеется, используются полноценные провода сечением 18AWG – класс блока питания обязывает.
Пульсации заметны, но их размах на шине +5В около 15мВ. На шине +12В – несколько больше, около 40мВ при полной нагрузке:
Шина +5В Шина +12В При уменьшении нагрузки размах пульсаций снижается, но незначительно. А вот по уровню стабильности
напряжений блок может конкурировать и с куда более именитым соперинком – с Delta Electronics... Равзе что шина +12В немного подвела, зато +5В на высоте:
6AR
| +12V | +5V | +3,3V
|
---|
min | 11,68 | 5,02 | 3,36
|
max | 12,92 | 5,21 | 3,38
|
min/max | 9,6% | 3,6% | 0,6%
|
В заключение хотелось бы отметить не очень удачное расположение дросселя пассивного PFC – он крепится к верхней крышке блока питания непосредственно за вентилятором, перекрывая часть потока воздуха.
Samsung SPS300W (мод. PSCD331605D)
Этот блок производства
Samsung был извлечен из корпуса
Space K-1. Внешне он примечателен в первую очередь расположением вентилятора – он стоит на нижней стенке блока, т.е. внутри компьютера, но дует при этом из системного блока наружу.
Во внутреннем устройстве блока обращают на себя внимание необычные радиаторы – без оребрения, но с загнутым под 90 градусов и перфорированными верхними частями. Впрочем, это понятно – в этом блоке поток воздуха направляется на них сверху, а не вдоль платы. Сетевой фильтр выполнен почти целиком. “Почти” – потому что первый дроссель представляет собой ферритовое кольцо, на которое намотаны несколько витков сетевого провода. Печатная плата прооизводит не особо приятное впечатление – какие-то разводы на верхней поверхности, остатки флюса на нижней...
В высоковольтном выпрямителе используются конденсаторы CapXon “LP” емкостью 330мкФ – немного для 300-ваттного блока... На выходах +5В и +3,3В – по дросселю и по два конденсатора CapXon “GL” по 1000мкФ; на выходе +12В – конденсатор CapXon “KM” на 2200мкФ. На последнем хотелось бы остановиться отдельно – дело в том, что серия “KM” – это конденсаторы широкого применения, а “GL” – так называемые LowESR, т.е. с низким эквивалентным последовательным сопротивлением. В импульсных источниках питания конденсаторы широкого применения не используются, т.к. из-за высокого сопротивления они могут заметно нагреваться, что в итоге приводит к их “вспуханию” и выходу блока питания из строя. Что будет с этим конденсатором через год-два – сказать трудно...
Вторая неприятная деталь – разъем ATX12V. Этот разъем был введен в дополнение к стандарту ATX 2.03 для систем, в которых процессоры питаются от шины +12В (это все системы на Pentium 4, двухпроцессорные системы на Athlon MP и так далее). Во-первых, небольшой разъем позволяет подвести питание непосредственно к стабилизатору питания процессора; во-вторых, в разъеме ATX всего один контакт +12В, и при большом токе он может разогреваться вплоть до расплавления корпуса разъема – в ATX12V разъеме таких контактов уже два. В блоке Samsung SPS300W разъем ATX12V изначально не предусмотрен, но для владельцев систем на Pentium 4 прилагается переходник. Проблема же в том, что переходник этот сделан с разъема питания ATX, т.е. проблема с перегревом и обгоранием контакта остается. Владельцам этого блока в случае таких неприятностей я бы советовал приобрести или сделать переходник на ATX12V с разъема питания винчестера; впрочем, и это не идеальный выход, ибо в рассматриваемом блоке таких разъемов всего четыре штуки.
И третье. Тестирование этого блока проводилось с максимальной нагрузкой на шину +3,3В, равной 14А (это максимально допустимый ток, несмотря на требования спецификации ATX поддерживать ток до 28А) и максимальной суммарной мощностью по шинам +5В и +3,3В, равной 160Вт.
Пульсации выходного напряжения были заметны, но существенной роли не играли – их размах составлял около 20мВ на шине +5В и около 40мВ на шине +12В, т.е. на среднем уровне:
Шина +5В Шина +12В А вот с напряжениями получилось хуже – во-первых, блок довольно-таки плохо держит напряжение на шине +5В, хуже даже, чем блоки IPower:
SPS300
| +12V | +5V | +3,3V
|
---|
min | 11,50 | 4,86 | 3,22
|
max | 12,52 | 5,25 | 3,34
|
min/max | 8,1% | 7,4% | 3,6%
|
Во-вторых, при нулевой нагрузке блок выдает напряжения, сильно выходящие за допустимые рамки – это хорошо видно на
графиках зависимости напряжения от тока, т.к. тесты начинались и заканчивались нулевой нагрузкой. Напомню, что, согласно требованиям спецификации, блок питания должен нормально реагировать на попытки запустить его на холостом ходу, либо, если уж он выдает напряжения – держать их в рамках дозволенного.
Ну и последняя ложка дегтя... Полную нагрузку блок выдержать не смог – он умер через четыре минуты после начала теста. Диагноз – не выдержал диодный мост в цепи +5В.
Simplex MPT-301
Этот блок, извлеченный из корпуса DTK
WT-PT074W, произведен компанией
Macron Power Co., Ltd. Сетевой фильтр присутствует в полном объеме, половина собрана на отдельной плате, напаянной прямо на контакты сетевого разъема. Во входных цепях стоят конденсаторы Fuh-jyyu “LP” емкостью 470мкФ; на выходе в цепи +5В – два конденсатора Fuhjyuu “TM” емкостью по 2200мкФ каждый, в цепи +12В – один 3300мкФ G-Luxon, в цепи +3,3В – дроссель и два конденсатора Fuhjyyu “TM” по 2200мкФ.
По непонятным причинам производитель блока применяет нестандартную расцветку проводов в ATX-разъеме: фиолетовый +3,3В, оранжевый Power OK и синий -12В. Сами провода полагающегося сечения 18AWG и несут на себе четыре разъема питания винчестеров и два – дисководов. Не считая, разумеется, стандартных ATX, ATX12V и AUX.
Размах пульсаций по +12В вполне приемлем – около 40мВ, но вот на шине +5В с более жесткими требованиями он мог бы быть и поменьше. На обеих шинах наблюдается аккуратный «треугольник» достаточно заметной амплитуды:
Шина +5В Шина +12В Выходные напряжения блок держит сравнительно неплохо, вот только +12В немного подкачало:
MPT301
| +12V | +5V | +3,3V
|
---|
min | 11,80 | 5,02 | 3,31
|
max | 13,18 | 5,26 | 3,33
|
min/max | 10,5% | 4,6% | 0,6%
|
Кроме того, на
графике можно заметить проблему, уже имевшую место для блоков IPower – замедленную реакцию на скачкообразное изменение нагрузки, когда выходные напряжения выходят на постоянный уровень лишь спустя несколько сотен миллисекунд после изменения нагрузки.
Заключение
Итак, еще одиннадцать блоков питания прошли через мои руки. Достойными среди них оказались пять – два блока питания от Delta Electronics, а также блоки от Fong Kai, FSP Group и Macropower; лидерство по качеству принадлежит блокам от Delta Electronics, однако и изделия других производителей не разочаруют своих владельцев. Не дотягивает до их уровня недорогой Simplex от Macron Power, из-за проблем с перегревом ключевых транзисторов выбыли HEC 300ER (который перед смертью успел продемонстрировать весьма странные параметры) и GIT G-300PT. На блоке питания от Samsung непонятно как оказалась этикетка с надписью “300W”, хотя на самом деле этот блок рассчитан максимум на 250Вт, что понятно даже при визуальном осмотре. Впрочем, бывает и хуже - блок питания IPower LC-B250 вообще способен играть роль разве что габаритного макета, но никак не устройства, могущего нормально питать современный компьютер; и лишь его старший брат LC-B300 имеет шансы занять место среди самых дешевых low-end блоков, рекомендовать которые к покупке у меня не поднимется рука.